Higgs Branching Ratio from ZH→HII

Mark Grimes

On behalf of:

Joel Goldstein, Mark Grimes, Clare Lynch

Victoria Martin, Hajrah Tabbasam and Roberval Walsh 🥨

Ö

Also with some slides from Satoru Uozumi, Kobe University

- Looking at events with 120 GeV Higgs and 250 GeV \sqrt{s} (some $Z \rightarrow \mu^+ \mu^-$ studies done at 230 GeV \sqrt{s}).
- Bristol has been looking at $Z \rightarrow e^+e^-$.
- Edinburgh has been looking at $Z \rightarrow \mu^+ \mu^-$.
- Concentrating on the ZZ background for the time being.
- Up until recently using our own samples, before moving over to the mass production samples. The following plots are first results from the LDCPrime_2Sc mass production (unless otherwise stated).

Lepton ID

Victoria Martin has already discussed the need to identify the primary leptons, remove them, and then recluster*.

— pandoraPFOs

160 17 recoil mass (GeV)

Roberval Walsh

Jets

140

150

130

Recoil mass (sqrt(s) = 230 GeV)

entries 200

400

300

200

100

0 110

120

ILD Meeting Cambridge 2008

Muon ID

Hajrah Tabassam has been looking at single particle samples to develop a set of muon cuts

Muon cuts

1) $E_{\text{ECAL}} < 2.5 \text{ GeV}$ 2) $E_{\text{HCAL}} < 15 \text{ GeV}$ 3) $E_{\text{ECAL}}/E_{\text{TOTAL}} < 0.5$ 4) $E_{\text{TOTAL}}/p < 0.3$

Electron ID

 Using the same electron ID as in the Kuhl-Desch LC Note*

• Track with momentum larger than 4 GeV associated to a calorimeter cluster

- No other track within 5 degrees
- The energy in the hadronic calorimeter must be less than 2 GeV and less than 5% of the total energy

Electron ID

These cuts perform slightly better than Pandora's internal electron ID

...although Pandora probably doesn't use an isolation cut.

Di-lepton mass

- The electron sample didn't give as good results as the muon sample.
- Observed that problem events had high energy bremsstrahlung.
- Tried looking for photons (as identified by Pandora) within a set angle of the identified electrons.

Bremsstrahlung

Recoil mass

The recoil mass for the mass production samples is much better than for our samples due to our overestimation of the beam effects.

Di-jet mass

If forcing to n jets, need to be careful not to include anything that is not part of the jets.

ILD Meeting Cambridge 2008

ISR/Beamsstrahlung

• The majority of Initial State Radiation/beamsstrahlung photons are low energy, but can decrease mass resolution if forced into the jets.

 Currently investigating identifying these to get a better idea of √s and hence better recoil mass measurements - how do you distinguish between initial and final state radiation?

Di-jet mass

• Observed low tails on the Higgs di-jet mass.

Neutrino effects

• Cutting on the di-jet mass biases the sample because decay modes involving neutrinos (e.g. H->bb) will be preferentially cut.

Much better to cut on the recoil mass

Event selection

Number of events left after each cut

Likelihood cut

...needs a lot more work, and more statistics. Kuhl and Desch managed S/B ~ 2.8

ILD Meeting Cambridge 2008

Flavour tagging

We are currently considering whether to force to two jets, or to use a ycut that would keep gluon fragmentation in separate jets.

• This could potentially improve flavour tagging performance.

Roberval Walsh

Branching ratio fit

The branching ratio is extracted by fitting to templates.

• Creating the templates will take a significant number of events, as well as test events to use them on.

• We may need to generate our own samples to complement the mass production samples

Summary/Future plans

- Need to confirm sample cross sections.
- Selection cuts need tweaking and different likelihood variables should be investigated.
- Use the recoil mass as well as or instead of the di-jet mass for selection. How well can you determine √s on an event by event basis?
- Need more events for the templates.
- Look at results for the different detectors, although we probably don't have the resources to create extra events for more than one detector.
- We need to investigate flavour tag performance for ycut and njet jet finding.

$H \rightarrow qq$ work in Japan

Satoru Uozumi apologises for being unable to attend, but has asked me to show some of the work ongoing in Japan.

ZH -> vvqq with GLD-based geometries

- Compare performance among 3 different geometries (GLD, GLD-prime, J4LDC)
- Data are generated by Jupiter, reconstructed on Marlin framework, analyzed with Satellites analysis libraries.

- Di-jet mass from all types of quark jets.
- No kinematic selection is applied yet, optimization of the cuts and estimation of efficiency underway.
- At this level no significant difference can be seen between 3 geometries.

21 Satoru Uozumi

Likelihood variables for a much larger LDC01_05Sc sample

~ 44000 ZH→eeH
~491000 ZZ→eeqq
(before applying pre-cuts)

Tried cutting unwanted particles (ISR etcetera) from the jets by using a low ycut and requiring jets to have at least 2 tracks.

Resulted in a large number of jets, could use these and recluster again but decided it was getting too fiddly.

ILD Meeting Cambridge 2008

- Use two neural nets, one to tag each jet for b flavour, and one for c flavour
- Results are a value between 0 and 1
- These are used to create an event b-likeness and clikeness using:
 - b tag jet 1 b tag jet 2 e b • likeness = b tag jet 1 • b tag jet 2 + (1 • b tag jet 1) • (1 • b tag jet 2)
 - Likewise for c likeness
- this basically only gives a high value if <u>both</u> jets have a high tag value.

