

Status report TPC task

Klaus Dehmelt

DESY

EUDET Extended SC Meeting JRA2

01-Sep-2008

EUDET

Detector R&D towards the International Linear Collider

LCTPC Large Prototype

Garniture

- → Field cage
- **◆** Endplate
- **→ MPGD detector modules**
- → Readout electronics
- → Gas system
- **→ DAQ & Monitoring**
- **→** Software development
- **→** SiLC envelope
- Cosmic trigger

- → Magnet (PCMAG)
- → Test beam T24/1

Inner Diameter 720 mm, Outer diameter 770 mm Wall thickness 25 mm Length 610 mm

Field Cage at DESY, being inspected and tested

Field Cage at DESY, being inspected and tested

First survey results are promising: specs seem to be within the tolerances, however, need to analyze and understand the data

Next steps

- → Measurement of the basic mechanical parameters of FC
- → Measurement of the position of strips (measure in a low-tech method by ourselves)
- → Mount a few more resistors and HV connectors/contacts to outside
- → LV test to check all electrical connections of the filed cage/strips
- → Pressure test, leak test and gas purity test
- → Pressure drop of TPC exhaust gas line (the gas monitor) for a nominal gas flow rate
- **→** HV test
- → Memo in preparation

MPDG Detector Modules

MicroMegas module + AFTER electronics being finalized for first usage in LP/PCMAG/DESY

- → One module (without resistive layer) is finished
- → Received in Saclay and being tested. Others with different resistive coatings should follow.

Two strategies being followed:

→ FADC-based (Lund, CERN)

- → FE is based on ALICE TPC FE
- → modified amplifiers in order to adopt to the ILC environment
- designed within the EUDET DAQ schemes

L. Jönsson LUND

Two strategies being followed:

- → FADC-based (Lund, CERN)
- → TDC (Rostock)

- → FADC-based (Lund, CERN)
 - 165 PCA16 chips have been tested in Lund,
 17 have not passed the final tests → 2368 channels available
 - * 800 remaining PCA16 chips are at CERN
 - lacktriangle Tests of the 2nd prototype FEC performed in Lund: performance as expected \rightarrow 15 boards being produced
 - 40 MHz ALTRO chips are mounted onto 2nd prototype board
 - ◆ 1 DRORC, 1 SIU, 1 optical-cable has been sent to Lund for setting up a system to install the new firmware → system will later be used in the test setup at DESY

- → TDC (Rostock)
 - Barcelona boards are available, all components for assembly present (640 ch)
 - Assembling will start in September
 - ASDQ chips are being tested
 - Pitch adapter to be assembled
 - LV distribution boards are not yet available
 - 1st tests are planned with a dummy prototype
 - Beginning of October TDC electronics is expected to be fully available

DAQ & Monitoring

Trigger Logic Unit (TLU) provided by University of Brussels:

- 4 comparators
- Beam trigger with scintillators

TLU outputs:

- Trigger signal (LVDS)
- Event number (LVDS) pulled out by a data clock (LVDS)

Distributor box:

- Get event# from TLU and tag event with time
- Send event # + time to DAQ computer, assert BUSY for a fixed time: waiting for DAQ PC end of r/o
- Provide common clock

DAQ & Monitoring

Monitoring via DOOCS:

Distributed Object Oriented Control System; output as LCCD stream in LCIO format

hardware is connected to control system with Beckhoff devices

Monitored parameters (so far)

- Temperature
- Gas pressure
- Gas flow
- Impurities
- HV control

Gas System

Basic gas system on the way:

- → Mass flow controller → regulating chamber pressure
- Monitoring of pressure, temperature, impurities
- Stainless steel tubing
- → Safety valve

HV System Overview

Software Development

MarlinTPC software package rather advanced

- Tools available for
 - DAQ stream
 - Data processing, reconstruction, digitization
 - Data analysis
 - TPC simulation

MarlinTPC is ready so far to be used with LP

Endplate

Endplate from Cornell just arrived at DESY

Magnet PCMAG & T24/1

Design Study of the Magnetmovementtable

Support structures:

- TPC
- PCMAG

Summary & Outlook

Main components are available:

- TPC needs to be assembled
- Assembled TPC needs to be commissioned
- DAQ components are available
- Slow Control / HV / Gas system available
- Magnet / T24/1 available
- GEM electronics (ALTRO) is expected to be finalized in October / November
- TPC support structure expected to arrive in mid September
- \bullet Open question about SiLC envelope \rightarrow main work to be done by HEPHY Vienna

