Spin tracking update

 Positron source meeting July 222008 Tony Hartin- Depolarization along linac negligible, spin tracking along BDS still to do
- Sources of depolarization at the \mathbb{P} - new simulation results for CLIC
- CAIN with full polarizations for pair processes
- Theoretical calculations of depolarization processes
- Operator Method - Baier, Kathov et al
- Volkov Solution method - $1964($ Nikishov-Ritus) approximations
- Updates on Sokolov-Ternov and T-BMT calculations

Depolarization at the \mathbb{P}

Den QED process of Beamsstrahlung, given By the Sokolov-Ternovenuation

$$
\begin{aligned}
d W= & -i \frac{\alpha m}{\sqrt{3 \pi \gamma}}\left[\int_{z}^{\infty} K_{5 / 3}(z) d z+\frac{x^{2}}{1-x} K_{2 / 3}(z)\right] d x \\
& \text { where } z=\frac{2}{3 v \omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i}-\omega_{f}}
\end{aligned}
$$

The fermion spin can also precess in the Bunch fields. Equation of motion of the spin Given By the T-BMT equation

$$
\frac{d \vec{S}}{d t}=-\frac{e}{m \gamma}\left[(\gamma a+1) \vec{B}_{T}+(a+1) \vec{B}_{L}-\gamma\left(a+\frac{1}{\gamma+1}\right) \frac{1}{c^{2}} \vec{v} \times \vec{E}\right] \times \vec{S}
$$

At the \mathbb{P}, the anomalous magnetic moment subject to radiative corrections in the presence of the Bunch field

Depol sims with CLIC parameters (I Bailey) change in polarization vector magnitude

CLIC-G ILC nom ILC (80/30\%)

	CLIC-G	ILC nom	ILC (80/30\%)
T-BMT	0.10%	0.17%	0.14%
Beamstr.	3.40%	0.05%	0.03%
incoherent	0.06%	0.00%	0.00%
coherent	1.30%	0.00%	0.00%
total	$\mathbf{4 . 8 0 \%}$	$\mathbf{0 . 2 2 \%}$	$\mathbf{0 . 1 7 \%}$

Classical spin precession in inhomogeneous external fields: T-BMT equation.

CAIN incoherent pair processes: BreitWheeler cross-section with polarizations

- Breit-Wheeler cross-section, CAIN original:

$$
0_{\text {orig }} \propto 2\left(1-h+\frac{2 \epsilon^{2}-1}{2 \epsilon^{4}}\right) \sinh ^{-1} p+\frac{p}{\epsilon}\left(3 h-1-\frac{1}{\epsilon^{2}}\right) \quad \begin{aligned}
& p \text { where electron momentum } \\
& \epsilon=\text { electron energy } \\
& h=\xi_{2} \xi_{2}^{\prime}
\end{aligned}
$$

full treatment due to Baier \& Grozin hep-ph/O209361

$$
\frac{d \sigma}{d \cos \theta d \phi}=\frac{\alpha^{2}}{4 s^{2} x^{2} y^{2}} \quad \sum_{i i^{\prime} j j^{\prime}} F_{j j^{\prime}}^{i i^{\prime}} \xi_{j} \xi_{j^{\prime}}^{\prime} \zeta_{i} \zeta_{i^{\prime}}^{\prime}
$$

F are functions of scalar products of 4momenta
where ha $=1+\xi_{3}+\xi^{\prime}{ }_{3}+\xi_{3} \xi^{\prime}{ }_{3}$
Full expression has similar structure to original CAIN form, so can utilise existing monte-carlo methods

ICBW initial state photon Stokes vector components (per bunch crossing)

Beamstrahlung photons have almost no circular polarization component - due to Beam field having constant crossed field vectors ${ }^{\text {lst }}$ two components of the Breit-Wheeler pair polarization depends heavily on the photon circular polarization component, therefore Oricinal Beam polarization contained in the $3^{\text {rd }}$

Final $e-\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=(-0.0024,-0.0024,0.9883)$
Final et $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=(0.0023,0.0079,0.987)$ component of the produced pair

- Pairs have sufficient transverse momentum to distinguish them from outgoing Beam, so...
- Could imacine a study to see how sensitive the final pair polarization is to the initial Beam polarization, But...
- Breit-Wheeler pairs Overlap with L-L and B-H pairs (derived using Equivalent Photon Approximation)

ST-two formulations

Derivation of Sokolov-Ternov eq n in the literature usually done with the 'operator method' of Baier Katkov et al

The energy levels of an ultrarelativistic electron in a macnetic
field are very close together, so assume motion is classical

- Operators of the dynamical variables of the electron commute
- Retain commutator Between electron and photon variables

Or it can Be done without kinematic approximatns at Lagrangian level using the Bound Interaction Picture
Make the external field implicit in a Bound Dirac Lacrancian LBD. Neglect the interaction Between photons and the external field A^{e}.

- The interaction Lacrancian expresses interaction Between the free Maxwell and the Bound Dirac fields $L_{B D}=\bar{\psi}_{V}(x)\left(i \gamma^{\mu} \partial_{\mu}-e \gamma^{\nu} A_{v}^{e}\right)-m \psi_{V}(x)$
- Requires solutions of the Bound Dirac field

fermion solutions represented operators By double straight lines

T-BMT Spin tracking: Anomalous macnetic moment in a strong field

Needed in T-BMT equation to calculate the rate of depolarization due to BeamBeam effect

$$
\vec{\Omega}=-\frac{e}{m \gamma}\left[(\gamma a+1) \vec{B}_{T}+(a+1) \vec{B}_{L}-\gamma\left(a+\frac{1}{\gamma+1}\right) \frac{\beta_{c}}{c} \vec{e}_{v} \times \vec{E}\right]
$$

Main contrisn from vertex diacram $a=\frac{\alpha}{2 \pi}+O\left(\alpha^{2}\right)$
when fermion is embedded in a strong external field characterised By $Y=v^{2} \frac{(k . p)}{m^{2}}$ the anomalous magnetic moment develops a dependence on Y and is Given By (Baier-Katk)

$$
a(Y)=-\frac{\alpha}{\pi Y} \int_{0}^{\infty} \frac{x}{(1+x)^{3}} d x \int_{0}^{\infty} \sin \left[\frac{x}{Y}\left(t+\frac{1}{3} t^{3}\right)\right] d t
$$

However ...we can envisage

- recalculating the vertex diagram in BP with Volkov solutions replacing all fermion lines
- Making mass correction (including self-energies)

