Spin tracking update Positron source meeting July 22 2008 Tony Hartin

- Depolarization along linac negligible, spin tracking along BDS still to do
- Sources of depolarization at the IP new simulation results for CLIC
- CAIN with full polarizations for pair processes
- Theoretical calculations of depolarization processes
 - Operator Method Baier, Katkov et al
 - Volkov Solution method 1964(Nikishov-Ritus) approximations
- Updates on Sokolov-Ternov and T-BMT calculations

Depolarization at the IP

There is depolarization (spin flip) due to the QED process of Beamsstrahlung, given by the Sokolov-Ternov equation

$$dW = -i \frac{\alpha m}{\sqrt{3}\pi \gamma} \left[\int_{z}^{\infty} K_{5/3}(z) dz + \frac{x^{2}}{1-x} K_{2/3}(z) \right] dx$$

where $z = \frac{2}{3\nu \omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i} - \omega_{f}}$

The fermion spin can also precess in the Bunch fields. Equation of motion of the spin given By the T-BMT equation

$$\frac{d\vec{S}}{dt} = -\frac{e}{m\gamma} \left[(\gamma a+1)\vec{B}_T + (a+1)\vec{B}_L - \gamma (a+\frac{1}{\gamma+1})\frac{1}{c^2}\vec{v}\times\vec{E} \right] \times \vec{S}$$

At the IP, the anómalous magnetic moment subject to radiative corrections in the presence of the Bunch field Stochastic spin diffusion from photon emission: Sokolov-Ternov effect, etc.

 $\underbrace{\overrightarrow{S}(e^+)}_{e^+} \sim \gamma$

Parameter set	Depondization ΔP_{lw}		
	T-BMT	S-T	tota1
Nominal	0.08%	0.02%	0.10%
low Q	0.04%	0.02%	0.06%
large Y	0.17%	0.02%	0.19%
low P	0.15%	0.09%	0.24%
TESLA	0.11%	0.03%	0.14%

Classical spin precession in inhomogeneous external fields: T-BMT equation.

Depol sims with CLIC parameters (I Bailey) change in polarization vector magnitude

	CLIC-G	ILC nom	ILC (80/30%)
T-BMT	0.10%	0.17%	0.14%
Beamstr.	3.40%	0.05%	0.03%
incoherent	0.06%	0.00%	0.00%
coherent	1.30%	0.00%	0.00%
total	4.80%	0.22%	0.17%

22/07/08

CAIN incoherent pair processes: Breit-Wheeler cross-section with polarizations

• Breit-Wheeler cross-section, CAIN original:

$$\sigma_{orig} \propto 2 \left(1 - h + \frac{2\epsilon^2 - 1}{2\epsilon^4} \right) \sinh^{-1} p + \frac{p}{\epsilon} \left(3h - 1 - \frac{1}{\epsilon^2} \right) \qquad \text{where} \quad \begin{array}{l} p = \text{electron momentum} \\ \epsilon = \text{electron energy} \\ h = \xi_2 \xi'_2 \end{array}$$

full treatment due to Baier = Grozin hep-ph/0209361

22/07/08

$$\frac{d\sigma}{d\cos\theta \,d\phi} = \frac{\alpha^2}{4s^2 x^2 y^2} \sum_{ii'jj'} F_{jj'}^{ii'} \xi_j \xi_{j'}^{'} \zeta_i \zeta_{i'}^{'}$$

F are functions of scalar products of 4momenta

$$\sigma_{new} \propto 2 \left(1 - h + \frac{2}{\epsilon^2} (ha + \xi_1 \xi_1') - \frac{ha}{\epsilon^4} \right) \sinh^{-1} p + \frac{p}{\epsilon} \left(3h - 1 - \xi_1 \xi_1' - \xi_3 \xi_3' - \frac{ha}{\epsilon^2} \right)$$

where $ha = 1 + \xi_3 + \xi'_3 + \xi_3 \xi'_3$ Full expression has similar structure to original CAIN form, so can utilise existing monte-carlo methods Positron Source meeting

Final pair polarizations $\zeta^{(f)}$

4800 4400 ICBW initial state photon Stokes vector components (per bunch crossing)

$$\zeta_{i}^{(f)} = \frac{1}{F} \sum_{ii'jj'} F_{jj'}^{i0} \xi_{j}\xi_{j'}^{'} \text{ where } F = \sum_{jj'} F_{jj'}^{00} \xi_{j}\xi_{j'}^{'}$$

Beamstrahlung photons have almost no circular polarization component - due to Beam field having constant crossed field vectors Ist two components of the Breit-Wheeler pair polarization depends heavily on the photon circular polarization component, therefore ~O Original Beam polarization contained in the 3rd component of the produced pair

- Could imagine a study to see how sensitive the final pair polarization is to the initial Beam polarization, **But**..
- Breit-Wheeler pairs overlap with L-L and B-H pairs (derived using Equivalent Photon Approximation)

support f_{20} f_{20} f_{20

Final e- $(\zeta_1, \zeta_2, \zeta_3) = (-0.0024, -0.0024, 0.9883)$ Final e+ $(\zeta_1, \zeta_2, \zeta_3) = (0.0023, 0.0079, 0.987)$

22/07/08

Positron Source meeting

ST - two formulations

Derivation of Sokolov-Ternov eqⁿ in the literature usually done with the 'operator method' of Baier Katkov et al

The energy levels of an ultrarelativistic electron in a magnetic field are very close together, so assume motion is classical

- Operators of the dynamical variables of the electron commute
- · Retain commutator between electron and photon variables

Or it can be done without kinematic approximat^{ns} at Lagrangian level using the Bound Interaction Picture $L_{BD} = \bar{\psi}_V(x)(i\gamma^{\mu}\partial_{\mu} - e\gamma^{\nu}A^{e}_{\nu}) - m\psi_V(x)$

Make the external field implicit in a bound Dirac Lagrangian L_{BD} . Neglect the interaction between photons and the external field A^e .

- The interaction Lagrangian expresses interaction Between the free Maxwell and the Bound Dirac fields
- Requires solutions of the Bound Dirac field operators

fermion solutions represented By double straight lines

T-BMT Spin tracking: Anomalous magnetic moment in a strong field

Needed in T-BMT equation to calculate the rate of depolarization due to Beam-

$$\vec{\Omega} = -\frac{e}{m\gamma} \left[(\gamma a + 1)\vec{B}_T + (a+1)\vec{B}_L - \gamma (a + \frac{1}{\gamma+1})\frac{\beta}{c}\vec{e}_v \times \vec{E} \right]$$

Main contribⁿ from vertex diagram $a = \frac{\alpha}{2\pi} + O(\alpha^2)$

Beam effect

$$2\pi$$

when fermion is embedded in a strong external field characterised by $Y = v^2 \frac{(k,p)}{m^2}$ the anomalous magnetic moment develops a dependence on Y and is given by (Baier-Katk)

$$a(Y) = -\frac{\alpha}{\pi Y} \int_0^\infty \frac{x}{(1+x)^3} dx \int_0^\infty \sin\left[\frac{x}{Y}(t+\frac{1}{3}t^3)\right] dt$$

However...we can envisage

- recalculating the vertex diagram in BIP with Volkov solutions replacing all fermion lines
- Making mass correction (including self-energies)

22/07/08

Positron Source meeting