

MANCHESTEI

Design of the Photon Collimators for the ILC Positron Helical Undulator

Adriana Bungau

The University of Manchester

Positron Source Meeting, July 2008

Content

- Introduction
- Photon collimator design
- Photon absorption
- Production of secondary particles
- Energy deposition

Introduction

- 150 GeV electron beam ->circularly polarized photons
- photon collimators -> used to protect the vacuum vessel
- the vacuum specifications of ~100 nTorr ->
- a highly demanding task

Previous work

- Collimators should have axially symmetric apertures
- Diameter should be smaller than the beam pipe
- Provide screening of the downstream elements

Goal

- A complete design of the collimator hasn't been done so far
- A collimator model is proposed:
 - photon absorption
 - secondary particle production
 - vacuum pressure
 - energy deposition

Photon Collimator Design

- Investigation of the possible collimator design
- Primary scope: stop the incident photons on the collimator (>95%)
- Materials:

Photon Collimator Design

Parameter	Value
Beam pipe radius	2.85 mm
Upper flat section	14 cm
Lower flat section	20 cm
Collimator gap	2.2 mm

Photon Spectrum

- Synchrotron radiation spectrum calculated with SPECTRA
- SPECTRA is time consuming for low energy photons (<100KeV) or distances larger than ~30 m
- For this initial study: collimators placed at 30 m from the undulator module
- A new code is developed to deal with unusual cases SPUR
- Photon spectrum in the range 1-100 MeV and between the angles
 67.9 and 97.35 urad

Beam Parameters

Parameter	Unit	Value
Energy	GeV	150
Current	uA	45
Undulator period	mm	11.5
Undulator K parameter		0.92, 0.92
Undulator aperture	mm	5.85
Undulator length	m	150
e⁻ beam size	um	66.75, 4.45
e ⁻ beam divergence	urad	0.3, 4.45

Undulator and electron beam parameters used to calculate the photon spectrum incident on the collimator.

Photon absorption

Goal : the collimators should stop at least 95% of the incident photons

- Performed Geant4 simulations (10⁵ photons in the bunch)
- Six combinations of collimator-undulator modules were modelled
- -For Ti Alloy: 96% photons stopped
- -For Copper: 99% photons stopped

Production of Secondary Particles

Electrons Energy Spectrum in Ti and Cu ∧an 102 11 MeV hist2_Cu hist2 Ti 216274 270532 Entries Entries Mean 1.097 Mean 1.175 1.438 RMS RMS 1.595 10 10² Copper 10² Titanium 10 20 E. MeV

Electron Production

- Secondary particles generated when photons pass through
- Electromagnetic shower modelled in both Cu and Ti
- Similar energy range for both materials
- Low energy range (0-30 MeV)
- More secondary electrons produced in Ti than in Cu

Secondary Particle Production

higher transmission in Ti than in Cu

 differences between two spectra due to the fact that moresecondariesare stoppedinside Cu

- 20 cm \cong 14 r.l in Cu
- 20 cm \cong 6 r.l in Ti

 low energy range ->good for vaccum pressure **Positron Production**

Secondary Particles Production

 Similar energy range for photon production in both Ti and Cu

 low energy range (0-30 MeV)

Gamma production

Energy Deposition

- Due to the electromagnetic shower
- Energy peak is at the collimator location
- Energy also deposited in the beam pipe following the collimator
 - 100 MeV/20 cm in Ti
 - 10 MeV/20 cm in Cu
- In a transverse section the max energy deposition is at collimator location (radius 2.2 mm)
- energy deposition in the beam pipe is due to showering

Energy deposition profile in a collimator slice

Temperature Rise

- calculated using the material properties (density, specific heat)
- Ti: 6x10⁻⁹ K
- Cu: 2 10⁻⁸ K
- temperature increase is small, the fracture temperature is not exceeded

Conclusion: the collimators can not be damaged

Instantaneous temperature rise in Cu

Conclusion

- A possible geometry with high photon absorption efficiency has been modelled for Cu and Ti
- Copper is a better candidate
- Secondaries have a low energy spectrum -> determine the change in the vacuum pressure
- Energy deposition and temperature rise showed that the collimators are safe
- Wakefield effects can be minimised by using as bulk material Cu
- Cu collimator can be make shorter (less room in the final engineering design?)