NEWS ON POSITRON CONVERSION CODE

Alexander Mikhailichenko

$$
\text { July 22, } 2008
$$

Cornell LEPP, Ithaca, NY 14853

Interactive Code for positron conversion

Undulator \rightarrow target \rightarrow focusing \rightarrow post acceleration

Written in 1986-1987; restored in 2007

PROGRAM KONN
 T.A.Vsevelozhskaya, A.A.Mikhallichenko

Monte-Cario simulation of positron conversion

Enersy of the beatac; Lergth of womidulator; Thaniator period $M=L / \lambda_{u}$; E-Sactor; Enotatance; Betw-fisuettors; Number of harmonder (fowr); Number of positrons to be generated; CALCULATES at every stage: [ffricucy th given phase volome; Polarkatlon in glven phase volasuc; Beasu dimenstons; Phane-space dustributiong; Bemm Lengthening; Ewergy sprecud withth phase space;	Targeth Thekess; Dimuteter oftreget; Material; Dinnueter of hole at cemuter; Step of calculuthon Lititara Lems: Distrance to the targets Lengts; Dicweter; Thicmers offlangef; Material offlonger; Gracternts Step of calcruburtoms;	Acceleration: Distance to the lemsi Length of stractere; Gradient; Dhanster of collthutior at fiec eatrance Dhameter of brices; Extermal nolenodial fleld; Fhother phase volume captured; Energy filter

- Particles described by 2D array (matrix). One parameter numerates particles, the other one numerates properties associated with each particle: energy, polarization, angles to axes; position
- Code has ~1500 rows;
- Possibility for the file exchange with statistical Code JMP;

Generation of parameters at radiation point

D7 is the distance between undulator and the target

```
AK=K0
DSTN=ALO*DRAND(0) ! ALO IS THE LENGTH OF UNDULATOR
SSC=ALO/2.-DSTN ! DISTANCE FROM CENTER OF UNDULATOR TO EVENT
BTA=BT+SSC**2/BT ! BETA AT THE POINT OF EVENT, BT IS IN CROSSIVER
W7=D7+DSTN ! DISTANCE TO THE TARGET FROM EVENT
R=DSQRT (ABS (BTA*EPS*DRAND(0))) !RADIAL POSITION OF ELECTRON
TETA=DSQRT (ABS (EPS/BT*DRAND(0)))! THIS ANGLE IS THE SAME; MODULE OF ANGLE
FI=PI*DRAND(0) ! AZIMUTHAL ANGLE
DR=W7*TETA
R=DSQRT (ABS (R*R+DR*DR-2.*R*DR*DCOS (FI))) Position of photon at the target
```

Formulas of undulator radiation used for generation of probability of radiation and probability for polarization at the point of event

Polarization effects implemented in KONN

! POLARIZATION CURVE APPROXIMATION
EP=POSITRON ENERGY/ Egamma-2mc²
EP4 $=$ EP- 0.4
EP6=EP-0.6
$\mathrm{PP}=0.305+2.15^{*}$ EP4
IF(EP.LT.0.4)PP=PP-0.05*EP4-2.5*EP4**3

IF(EP.GT.0.6)PP=PP-0.55*EP6-2.65*EP6**2+0.7*EP6**3 ! PP=PP-0.55*EP6-2.6*EP6**2 IF(PP.GT.1.)PP=1. Sentinel

Depolarization occurs due to spin flip in act of radiation of quanta having energy< $\kappa \omega_{\gamma} \leq E_{1}$ where E_{1} stands for initial energy of positron. Depolarization after one single act

$$
D=1-\left|\frac{d \sigma_{\mu}\left(\zeta_{1}, \zeta_{1}\right)-d \sigma_{\mu e}\left(\zeta_{1},-\zeta_{1}\right)}{d \sigma_{\mu}}\right|=\frac{\hbar^{2} \omega_{\gamma}^{2} \cdot\left[1-\frac{1}{3} \zeta_{1 \|}^{2}\right]}{E_{1}^{2}+E_{2}^{2}-\frac{2}{3} E_{1} E_{2}} \quad \begin{array}{ll}
\text { Energy after } \\
\text { radiation }
\end{array}
$$

Where $d \sigma_{\mu}\left(\zeta_{1}, \zeta_{1}\right)$ tands for bremstrahlung cross section without spin flip, $d \sigma_{\mu}\left(\zeta_{1},-\zeta_{1}\right)$ -the cross section with spin flip and $d \sigma_{\mu} \quad$ is total cross section.

$$
L_{\text {dep }} \cong \frac{1}{n \int D\left(\vec{p}_{1}, \zeta_{1}\right) d \sigma} \quad \longrightarrow \quad L_{\text {dep }} \cong \frac{2 X_{0}}{1-\frac{1}{3} \zeta_{\|}^{2}} \cong 3 K_{0} \quad \text { Rad. length }
$$

Depolarization in a target $\sim 5 \%$

It is possible now to operate with array of particles and theirs properties in JMP

Example: energy for each particle generated by 1-4 ${ }^{\text {th }}$ harmonics of Undulator

Quantiles	
100.0\% maximum	60.683
99.5\%	46.404
97.5\%	32.906
90.0\%	21.547
75.0\% quartile	12.992
50.0\% median	7.785
25.0\% quartile	4.747
10.0\%	2.845
2.5\%	1.141
0.5\%	0.594
0.0\% minimum	0.512
Moments	
Mean	10.286008
Std Dev	8.2902435
Std Err Mean	0.1172652
upper 95\% Mean	10.5159
lower 95\% Mean	10.056117
N	4998

CONCLUSIONS

Code is under constant improvement;
Introduced file exchange between KONN and statistical code JMP7
Inserted quick evaluation of lens parameters such as current, pressure field at the surface;

Introduced energy filter at low and at high energy (right after the target and after acceleration);

Soon will be introduced solenoidal lens;

