NEWS ON POSITRON CONVERSION CODE

Alexander Mikhailichenko July 22, 2008

Cornell LEPP, Ithaca, NY 14853

Interactive Code for positron conversion

Undulator → target → focusing → post acceleration Written in 1986-1987; restored in 2007

> PROGRAM KONN T.A.Vsevelezhskaya, A.A.Mikhaffichenko

Monte-Carlo simulation of positron conversion

Energy of the beam; Length of undulator; Undulator period M=L/ λ_u ; K-factor; Emittance; Beta-function; Number of harmonics (four); Number of positrons to be generated;

Target: Distance to the undulator Thickess; Diameter of target; Material; Diameter of hole at center; Step of calculation Acceleration: Distance to the lens; Length of structure; Gradient; Diameter of collimator at the entrance; Diameter of irices; External solenoidal field; Further phase volume captured; Energy filter

Litinm Lens:

CALCULATES at every stage: Efficiency in given phase volume; Polarization in given phase volume; Beam dimensions; Phase-space distributions; Beam lengthening; Energy spread within phase space; Distance to the target; Length; Diameter; Thioness of flanges; Material of flanges; Gradient; Step of calculations;

KONN at a glance	
POSITRON conversion	
Use slash to confirm	
CONVERSION - C FOCUSING - F ACCELERATION - A	 Particles described by 2D array (matrix). One
WHAT TO DO? -	parameter numerates
* PARAMETRES OF THE LENS *** Pressure, current,	particles, the other one numerates properties
DISTANCE TO LENS = .500 := field in Lens RADIUS OF THE LENS = .700 := LENTH OF THE LENS = .500 := GRADIENT MG/cm = .055 := RADIATIONAL LENTH = 156.000 := THICKNESS OF 1 FLN. = .050 := RAD. LENTH OF FLAN. = 36.000 :=	associated with each particle: energy, polarization, angles to axes; position
OSITRONS PASSED= 5000 POSITRONS ACCEPTED= 3600 BETA= .186 EFF = 7.01365	*
FM005 RHM364 AMM391 F111 RMS = <u>.393 PMS = .339 PTM</u> = 2.115 PZM = 8.473 DPZ = 3.525 PRM = .040 TM = 1.188 DTM = .080 WW = .761 WWP = 1.163	□ Code has ~1500 rows;
TOTAL CURR IN LENS = 134.750 kA SURFACE FIELD = 3.850 Tesla AXIAL PRESSURE = 5.898 MPa	Possibility for the file
EFF(EX.CT)	ovehen og with
.0111 .0373 .0861 .0689 .1014 .4138 .1446 .3686 .3935 .3576 .2446 .2659	exchange with
.2537 .4971 .4010 .1977 .0483 .0207	statistical Code JMP;
.1196 .3857 .3645 .1344 .0390 .0000	<i>y y y y y y y y y y</i>
.1059 .2228 .1952 .0896 .0221 .0000	
EFP(EX,CT)	
.0174 .0429 .0583 .0248 .0324 .0321	
.2936 .2589 .2203 .2320 .1522 .1738	
.2788 .2943 .2790 .2965 .3310 .1206	

-

Generation of parameters at radiation point

D7 is the distance between undulator and the target

R=DSQRT (ABS (R*R+DR*DR-	² .*R*DR*DCOS(FI)) Position of photon at the target
DR=W7*TETA	
FI=PI*DRAND(0)	! AZIMUTHAL ANGLE
TETA=DSQRT (ABS (EPS/BT*	DRAND(0)))! THIS ANGLE IS THE SAME; MODULE OF ANGLE
R=DSQRT (ABS (BTA*EPS*DR	AND(0))) !RADIAL POSITION OF ELECTRON
W7=D7+DSTN	! DISTANCE TO THE TARGET FROM EVENT
BTA=BT+SSC**2/BT	! BETA AT THE POINT OF EVENT, BT IS IN CROSSIVER
SSC=AL0/2DSTN	! DISTANCE FROM CENTER OF UNDULATOR TO EVENT
DSTN=AL0*DRAND(0)	! ALO IS THE LENGTH OF UNDULATOR
AK=K0	

Formulas of undulator radiation used for generation of probability of radiation and probability for polarization at the point of event

Polarization effects implemented in KONN

POLARIZATION CURVE APPROXIMATION

EP=POSITRON EN<u>ERGY/ Ega</u>mma-2mc²

EP4=EP-0.4 EP6=EP-0.6 PP=0.305+2.15*EP4 IF(EP.LT.0.4)PP=PP-0.05*EP4-2.5*EP4**3 IF(EP.GT.0.6)PP=PP-0.55*EP6-2.65*EP6**2+0.7*EP6**3 IPP=PP-0.55*EP6-2.6*EP6**2 IPP=PP-0.55*EP6-2.6*EP6**2

Depolarization occurs due to spin flip in act of radiation of quanta having energy $< \hbar \omega_{\gamma} \le E_1$ where E_1 stands for initial energy of positron. Depolarization after one single act

$$D = 1 - \left| \frac{d\sigma_{\gamma e}(\zeta_1, \zeta_1) - d\sigma_{\gamma e}(\zeta_1, -\zeta_1)}{d\sigma_{\gamma e}} \right| = \frac{\hbar^2 \omega_{\gamma}^2 \cdot [1 - \frac{1}{3}\zeta_1^2]}{E_1^2 + E_2^2 - \frac{2}{3}E_1E_2} \qquad \text{Energy after radiation}$$

Where $d\sigma_{\mathcal{P}}(\zeta_1,\zeta_1)$ stands for bremstrahlung cross section without spin flip, $d\sigma_{\mathcal{P}}(\zeta_1,-\zeta_1)$ -the cross section with spin flip and $d\sigma_{\mathcal{P}}$ is total cross section.

$$L_{dep} \cong \frac{1}{n \int D(\vec{p}_1, \zeta_1) d\sigma} \longrightarrow L_{dep} \cong \frac{2X_0}{1 - \frac{1}{3}\zeta_{\parallel}^2} \cong 3X_0 \qquad \text{Rad. length}$$

Depolarization in a target ~5%

It is possible now to operate with array of particles and theirs properties in JMP

Example: energy for each particle generated by 1-4th harmonics of Undulator

CONCLUSIONS

Code is under constant improvement;

Introduced file exchange between KONN and statistical code JMP7

Inserted quick evaluation of lens parameters such as current, pressure field at the surface;

Introduced energy filter at low and at high energy (right after the target and after acceleration);

Soon will be introduced solenoidal lens;