LI LENS UPDATE

Alexander Mikhailichenko July 22, 2008

Cornell LEPP, Ithaca, NY 14853

Li LENS BASICS

Windows made from BN or Be

For given focal distance *F*, radius *a*, length *L*, the current required is

 $I \cong \frac{a^2 \cdot (HR)}{0.2FL}$

For *F*=1cm, *a*=0.5cm, *L*=0.5cm *I*=166kA

NEW TYPE OF COMMUTATORS FOR HIGH CURRENT

Fig.2. Reverse – switched dinistors for peak current from 200 kA to 500 kA and blocking voltage of 2400 V, encapsullated in hermetic metal – ceramic housing and without housing (RSD sizes of 64, 76, and 100 mm)

POWER SUPPLY SCHEMATICS

BY USAGE OF RDS, THE POWER SUPPLY LOOKS PRETTY GUARANTEED

Li lens can be used with any target: liquid metal (Pb-Bi, Hg) or Ti rim

Right after the target located Aluminum made accelerating structure immersed in solenoidal magnetic field. Solenoid wound with Al conductor.

In principle the transformer could be used here also

Direct feeding with high current PS looks more progressive

General parameters	
Energy of primary beam	~150 GeV
Undulator period λ	10-12 mm
<i>K</i> factor, $K = eH\lambda/2\pi/mc^2$	0.4-1
Undulator length	≤ 200 m
Efficiency, e ⁺ /e ⁻	1.5
Polarization	≥ 60%
Target W/Ti	1.75 mm/14.8 mm
Energy of quanta	~18 MeV
Distance to the target*	180 m
Lens	
Feeding current, <i>I</i>	<150 kA
Field at surface, <i>H</i> _m	43 kG
Gradient	≤ 62kG/cm
Pulsed power	~200kW
Average power	~4kW
Pulsed duty , $ au$	<4msec
Lens diameter, 2 <i>a</i>	1 cm
Length, L	0.5-1 cm**
Axial pressure, P_0	74atm (for <i>L</i> =0.5cm)
Temperature gain per pulse	≤ 170°C at 150kA