Bhabha polarimeter update

R. Dollan

Bhabha-Polarimeter Update

- E_{beam}: after pre acceleration ~ 400 MeV
- cross section:

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{(1+\cos\theta)^2}{16\gamma^2 \sin^4\theta} \left\{ \left(9+6\cos^2\theta+\cos^4\theta\right) - P_{e^+}P_{e^-} \left(7-6\cos^2\theta-\cos^4\theta\right) \right\}$$

- theor. max. asymmetry bei 90°(CMS)
- ~ 7/9 ≈ 78 %
- example: $P_{e+} = 80\%$, $P_{e-} = 7\% A_{max} \sim 4.4\%$

- Mask/shielding selects angular range with max. asymmetry
- spectrometer -> particle separation, energy selection
- Polarization measurements
 - -> Asymmetry measurements of opposite polarization states of the target

e⁻ produced the target

30 μm magnetized Fe-Foil
E_{beam} : 400 MeV (10 % spread)
Ang. Spread : 0.5°

asymmetry (analyzing power)

e⁻ distribution

ang. range of interest: 0.03 - 0.1 rad -> Asymmetry in the ang. range: $A_{e^-} \sim 50 \%$ $(A_{e^+} \sim 5\%, A_{\gamma} \sim -15\%)$

"spring" geometry

Changed geometry

New geometry in G4

New geometry in G4

Results (e⁻ only)

- Distribution of electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- New magnet
- BdL 0.1 Tm
- P(100%/100%)
- 1.6 x 10⁹ positrons on target
- A ~ 51% (RMS 22%)

Asymmetry

63 0.5153

0.2204

21.9 / 11

 $\begin{array}{c} 5.221 \pm 1.620 \\ 0.5911 \pm 0.0284 \end{array}$

 $\textbf{0.1267} \pm \textbf{0.0394}$

Entries

 χ^2 / ndf

Mean

Sigma

0.5

0

Constant

Mean RMS

300

200<mark>-1500</mark>

-1000

-500

Results (e^+ and e^-)

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 μ m Fe
- E_{beam} 400MeV
- New magnet
- BdL 0.1 Tm
- P(100%/100%)
- 1.6 × 10⁹ positrons on target
- A ~ 43% (RMS 21%)

w. BG (beam pipe interactions)

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 μ m Fe
- E_{beam} 400MeV
- New magnet
- BdL 0.1 Tm
- P(100%/100%)
- 1.6 x 10⁹ positrons on target

w. BG and Energy cut

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 μ m Fe
- E_{beam} 400MeV
- New magnet
- BdL 0.1 Tm
- P(100%/100%)
- 1.6 \times 10⁹ positrons on target
- Energy cut: 100 MeV

- new (adaptive) geometry with a more realistic magnet implemented
- asymmetries as expected
- background studies ongoing (shielding of low energy electrons from beampipe interactions - difficult -> not much space)
- implementation of real beam (much lower background expected)
- simulation of lower target polarization ($P_{e_{-}}7\%$) and target inclination is ongoing in parallel (question of computing time and statistics)