

Clock & Control Timing and Link

29 July 2008

Matt Warren Maurice Goodrick, Bart Hommels, Marc Kelly,

Timing Overview

- C+C provides a fast clock (CLOCK)
 - -Expected to be 50-100MHz, local or machine.
- CCC does NOT support varied delays on individual outputs.
- LDAs do not adjust individual link timings
 - Presumed cables to all LDAs equal length in a timing domain.
- Hoped that DIFs can adjust own timing if really needed using FPGA resources.
- CCC card can adjust timing of synchro-signals wrt CLOCK
- BUNCH-CLOCK (slow clock) derived as CLOCK/n
 - -Produced by a counter on the DIF
- Start of train signal (TRAINSYNC) synchronises bunch-clocks on all DIFs.
 - Requires fixed-latency signal a SYNCCMD.
 - -SYNCCMD "qualifies" CLOCK edge

CCC Link Interface

- CCC should connect to LDA, DIF and ODR using the 'standard' HDMI cabling and connectors and pinout (*CLink*)
 - -But only a subset of the signals/functions used.
 - -CCC can be used as a pseudo-LDA for stand-alone DIF testing
- A distinction is made between fast and fixed latency signals.
 - Fast signaling is asynchronous and uses a dedicated line to transfer a pulse. No attempt is made to encode data.
 - Fixed-latency signaling will not arrive fast, but will arrive a known latency after reception by CCC.

HDMI Signals				
CLink Signal	Direction	Function	Туре	
CLOCK_L2D	LDA→DIF	Distributed DIF Clock	STP	
DATA_L2D	LDA→DIF	Data to DIF (mainly configuration)	STP	
DATA_D2L	DIF→LDA	Data from DIF (mainly events)	STP	
ASYNC_L2D	LDA→DIF	Asynchronous trigger	UTP*	
GEN_D2L	DIF→LDA	General use	STP	

* Twisted pair not guaranteed by HDMI specification but seen in commercial cables

^

CCC Link Signals

• CLOCK

-Machine clock (50-100MHz)

• TRAINSYNC_OUT

- -Synchronisation of all the front-end slow clocks.
- An external signal will be synchronized to the clock and transmitted as a single clock-period wide pulse to the LDA.
- -To allow communicating with a stand-alone DIF, the CCC board will can be configured to send the LDA 8b/10b serialised command for train-sync.

• ASYNC_OUT

-Transfer asynchronous triggers as fast as possible.

• GEN_IN

 General purpose signal for use in communicating with the CCC (and therefore run control) system. A hardware OR of these signals is available on the CCC.

CLink Signal	CCC Signal	Function			
CLOCK_L2D	CLOCK_OUT	Clock			
DATA_L2D	TRAINSYNC_OUT	Trainsync signal output			
DATA_D2L	Unused	Unused			
SYNC_L2D	ASYNC_OUT	Asynchronous signal			
SEN_D2L	GEN_IN	General purpose			

SYNCCMD Details

- SYNCCMD is the ONLY mechanism for synchronising DIFs -4 types of command are possible, but only one is required.
- Expects a PRE bunch-train/spill signal
 - -Signal in known phase with BUNCH CLOCK
 - -Hopefully PRE-signal is a fixed period prior to first bunch of train
 - -Synchronous to CLOCK
- CCC card forwards signal to LDAs
 - -Synchronises signal to local clock when needed
- LDA stores arrival time wrt serialised bit number.
- Next Word to DIFs replaced with special SYNCCMD word
 - -First byte dedicated K character
 - -Second byte (7:6): Type; (5:0): Delay (could be 3:5 ratio too)
- SYNCCMD system on DIF delays signal specified number of CLOCKs and issues the required signal.

