

ILC Accelerators and Detectors

Nobu Toge (KEK)

ILC Talk, ICHEP2008, 20080805

ILC as N'th Generation e+e- Collider

- Higgs-strahlung
 - Detection + Decays
 - Coupling
- SUSY

İİL

- Top quark
- Signatures beyond SM

- Higgs-strahlung
 - Detection + Decays
 - Coupling
 - Properties
- SUSY

IIL

- Top quark
- Signatures beyond SM

• Higgs-strahlung

- Detection + Decays
- Coupling
- Properties

• SUSY

- Detection
- Smuon mass, spin
- Parameters
- SUSY dark matter
- Top quark
- Signatures beyond SM

 $e^+e^- \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^-, \ \tilde{\mu}_R \rightarrow \mu \tilde{\chi}_1^0$

- Signal : $\mu^+\mu^-$ and nothing. Plot acoplanarity of $e^+e^-\mu^+\mu^-$.
- Polarized e⁻ (R) can reduce W⁺ W⁻ background.

- Higgs-strahlung
 - Detection + Decays
 - Coupling
 - Properties
- SUSY

IIL

- Detection
- Smuon mass, spin
- Parameters
- SUSY dark matter
- Top quark
- Signatures beyond SM

Relic density estimation by LHC and ILC vs mass of LSP neutralino (scenario: (mSUGRA SPS1a)

• Higgs-strahlung

- Detection + Decays
- Coupling
- Properties
- SUSY

İİL

- Detection
- Smuon mass, spin
- Parameters
- SUSY dark matter
- Top quark
 - Mass, width, decay mode:
- Signatures beyond SM
 - If there are some

ILC Reference Design (Summer 2007)

- As result of GDE work (2005-2007)
- 4 volumes set

Physics at the ILC

Detectors

Available at: http://www.linearcollider.org/cms/?pid=1000437

In this talk...

I will bring you folks up to date on -

- Global efforts for ILC (International Linear Collider): Status and near-future plans.
 - Accelerator GDE (Global Design Effort)
 - Detector-related RD (Research Director's Org.)
- To put the conclusions first -
 - There is a large, coordinated, global efforts on ILC,
 - Aiming at developing a project proposal with integrated accelerator and detectors designs, together with
 - A project execution plan,
 - Which can be handed to governments.
 - In the form of a document completed in 2012.

Reference Design in Nutshells

- ECM = 500GeV max within a site footprint of ~31km.
- Main Linacs: operating superconducting (SCRF) cavities at Eacc = 31.5MV/m (16000 units of 9-cell cavities → 2 x ~12km)

IIL

 Injectors: Polarized (P~80%) e- source with 2 damping rings (e- and e+) around interaction region.

Reference Design in Nutshells

- İİİ - Injectors (cont): Undulator-based (150m @ 150GeV) e+ source within e- main linac
 - Interaction region: Single IR with 14mrad beam crossing
 - Lumi = 2x10³⁴ cm⁻²s⁻¹, f_rep = 5Hz

Reference Design in Nutshells

- Total tunnel length ~ 72.5 km
- Excavation 443km³
- 13 x access shafts (or access routes)
- 92 x surface buildings, floor area ~ 52,700m²

ILC Cryostats and Cavities for Main linacs

 1 cryomodule contains 8 cavities + 1 magnet or 9 cavities (Eacc = 31.5MV/m on average, each having a length ~ 1m)

- Total ~1700 cryostats, ~16000 cavities.
- 3 cryostats to be driven by one 10MW L-band klystron
- Total 560 RF units in e+/e- main linacs

Accelerator: Mgmt Structure in GDE

- GDE Director = ICFA appointment
- Executive Committee (EC) assists GDE Director on Executive matters of GDE.
- Three leaders (Project Managers) under the Directoror to lead
 - Accelerator Sys.
 - Superconducting RF
 - Instr. + Control, Conventional Facilities and Siting, Globals
- And additional managerial groups

İİİ

Technical Design Phase 1 -- till mid-2010

- Demo. "Technical Feasibility"
- High-priority, risk-mitigating R&D
- Value engineering (cost vs performance analysis) in selected areas.
- Re-baseline of the design as found appropriate and necessary.

Technical Design Phase 2 -- till 2012

- Demo. "Technical Credibility"
- Refine the design
- Continued R&D
- Cost roll-up
- Development of a project implementation plan.

Detector Design Phase 1 -- till mid-2010

- Validation of detector concepts, to examine as integral parts of accelerator TDP.
- Focus R&D on critical elements; MDI design details.
- Update of physics performance
- Start-up of technical design work

Detector Design Phase 2 -- till 2012

- Refine the design
- Continued R&D
- Cost roll-up.
- Development of a project implementation plan.
- Actions in response to LHC results

Intention is to produce a report which can be handed ILC Talk, ICHEP 2008, 200808080 for evaluation in ~2012.

ILC R&D Test Facilities Deliverables

Test Facility	Deliverable								
Optics and st	abilisation demonstrations:								
ATF	Generation of 1 pm-rad low emittance beam	2009							
	Demo. of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).	2010							
AIF-2	Demo. of prototype SC and PM final doublet magnets	2012							
	Stabilisation of 35 nm beam over various time scales.	2012							
Linac high-gradient operation and system demonstrations:									
TTF/FLASH	Full 9 mA, 1 GeV, high-repetition rate operation	2009							
STF & ILCTA-	Cavity-string test within one cryomodule (S1 and S1-global)	2010							
NML	Cryomodule-string test with one RF Unit with beam (S2)	2012							
Electron clou	d mitigation studies:								
	Re-config. (re-build) of CESR as low-emittance e-cloud test facility. First meas. of e-cloud build-up using instrumented sections in dipoles and drifts sections (large emittance).	2008							
CESR-TA	Achieve lower emittance beams. Meas. of e-cloud build up in wiggler chambers.								
	Characterisation of e-cloud build-up and instability thresholds as a func. of low vertical emittance (≤20 pm)								

ATF and ATF2 @KEK

ATF Damping Ring

Check-out electronics for cavity BPMs

Beam size monitor with laser interference pattern

CesrTA @ Cornell

- "Electron Cloud" Issue at Positron Damping Rings (e+ DR)
 - Synchrotron radiation → Inner wall of vacuum chamber → secondary electrons → "Electron cloud" → Beam instabilities / Emittance growth
- CesrTA
 - Can use positrons.
 - Vehecle for the ILCDR R&D on the timescale of the ILC TDP
 - Internat'l collaboration was formed, centered around Cornell.
 - Reconfiguration of CESR is in progress.
- A series of beam experiments in 2008-2010.
 - Growth of Electron Cloud and Mitigation Studies
 - Probe bunch configurations similar to ILC DR
 - Conduct unique studies in high field damping wigglers
 - Ultra Low Emittance Operation & Beam Dynamics Studies
 - Validate correction algorithms
 - Measure and maintain ultra low emittance beams
 - Characterize sources of emittance growth in ultra low emittance beams
 - Probe species dependent effects
 - **Deliver design inputs for the ILC Technical Design Phase**

CesrTA @ Cornell - Program

0.75mA/bunch e+@1.9 GeV

Baseline Lattice

Parameter	Value
No. of Wigglers	12
Wiggler Field	2.1 T
Beam Energy	2.0 GeV*
ΔE/E	8.6 x 10 ⁻⁴
$\epsilon_{\rm v}$ (geo) target	<20 pm
$\epsilon_{\rm h}$ (geo)	2.3 nm
Damping Time	47 ms
Bunch Spacing	4 ns
Bunch Length	9 mm

*CESR operating range is 1.5-5.5 GeV

R&D on Superconducting RF System

Calender Year		2	2008	2009	2010	2011	2012	
Technical Design			TI	DP1		TDP-II		
S0:	30				35		35	
Cavity Gradient (MV/m)					(> 50%)		(>90%)	
KEK-STF-0.5a: 1 Tesla- like/LL								
KEK-STF1: 4 cavities								
S1-Global (AS-US-EU)				СМ (4 _{АS} +2	_{US} +2 _{EU})			
1 CM (4+2+2 cavities)				<31.5 M\	//m>			
S1(2) -ILC-NML- Fermilab					CM2 C	CM3 CM	4	
CM1- 4 with beam								
S2:STF2/KEK:		Fabrication STF2 (3 CMs					CMs)	
1 RF-unit with beam			in industries Assemble & test					

DESY Activities

Experiences being gained from FLASH and EuroXFEL construction are critical inputs for ILC:

SCRF tech; HW implementation in tunnels; multinat'l mgmnt

FNAL-ANL

New electro-polishing facility built at ANL

ILC Talk, ICHEP2008, 20080805

Data from Jefferson Lab US Cavity Test Program (FNAL-Cornell-Jlab)

ILC Talk, ICHEP2008, 20080805

ILCTA-NML @ FNAL

Horizontal test stand for cavities

9-cell cavity near vertical test stand

ILC Talk, ICHEP2008, 20080805

STF @ KEK

Horiz. Cryostat with 4 units of 9-cell cavities

ILC High-Gradient Cavity R&D

- A certain number of 9-cell cavities started satisfying ILC performance spec in vertical testing.
- Basic infrastructure has been built up and put in place for cavity manufacturing and testing, at US and Asian labs, besides Europeans.
- "Reference procedure" for cavity fab. and tests has been formulated:
 - For repeated studies.
 - For identifying issues and varying practices across the world
- New (or renewed) diagnostic techniques and studies are put into lab test cycles.

ĪĪĻ

Plug Compatible Assembly

Plug Compatible Assembly

- String assembly + test via international collaboration under planning.
- 2 cavities from Europe, 2 cavities from Americas 4 cavities from Asia, to be assembled into
- A cryomodule based on a European design.
- An exercise of learning "global component plug compatibility" in 2009-2010.

IIL

Conventional Facilities and Siting

- Cost reduction / Value engineering
 - CF/S accounts for approx 1/3 of the total construction cost in RDR.
 - Surveys on selected set of topics are being relaunched
 - re-strategize the cooling systems design for RF/controls;
 - revisit the 1-tunnel vs 2-tunnel,
 - And others
- Site issues Our mission is to prepare the best possible information to potential hosts, NOT to make a statement of preferred site(s) one way or others. So, we conduct -
 - More specific studies on "deep-tunnel" cases, which have been examined with RDR (one "sample" sites from each of the three regions).
 - Survey of "shallow-tunnel" cases (a study case offered by the Dubna Group).
 - Attain additional understanding and options for cost saving opportunities.

ILC Talk, ICHEP2008, 20080805

ILC-CLIC Cooperation

- Anticipation of the new energy frontier to open with LHC, which
 - Would motivate a complementary lepton collider,
 - With varying technological backbone but with fairly common technical issues also,
 - That lead us to cooperatively optimize the developments of lepton colliders.
- Formation of several ILC-CLIC working groups
 - Civil engineering and conventional facilities.
 - Beam delivery systems and machine-detector interface.
 - Cost and schedule.
 - Beam dynamics.
 - Physics and detectors.
- Meeting in May, 2008
 - Conveners have been identified for each WG.
 - First, learning on activities + issues of both sides; Then, hopefully launch joint subsystem design development in some selected areas.

For Details of TDP Plans

- Available from: <u>http://ilc-</u> <u>edmsdirect.desy.de/ilc-</u> <u>edmsdirect/file.jsp?edmsid=D000</u> <u>0000*813385</u>
- First Official Release
- Released in GDE meeting at Dubna
- Next review and release: December 08

ILC Talk, ICHEP2008, 20080805

IIL

Global Design Effort

Detector: Mgmt Structure under RD

Detector Concepts / Common Task Groups

- Detector concepts
 - Ways of integrating detector technologies into optimized detector facility designs, and then into part of a bigger ILC facility.

• Common task groups

- Ways of facilitating development and refinement of "common" tools / tasks.
- R&D Collabs
 - Collabs on specific subsystem technologies

İİL

- Three sets of *Expressions of Interest* (EOIs) have been submitted in March 2008.
 - SiD

- ILD
- 4th Concept
- Letters of Intent (LOIs) are due by March 2009. LOIs will then be validated by the newly-formed International Detector Advisory Group (IDAG, Chair: M.Davier) under RD, before proceeding in sync with the rest of GDE TDP.
 - validation = ascertain whether the proposed detector can do the required physics; NOT acceptance of an experiment for construction of ILC.
- Notes:
 - Collab program on detectors between ILC and CLIC also.

Two-Phased Development of Detector Concepts (in sync with GDE)

- Detector Design Phase I (till 2010)
 - Focus R&D on critical elements
 - Completed validated detector specifications, then initiate technical design work
 - Update physics performance specs
 - Detailed MDI studies
- Detector Design Phase 2 (till 2012)
 - Respond to LHC results with appropriate actions
 - Confirmation of physics performance
 - Complete the technical design of detectors to incorporate in the ILC proposal
- Matrix-like structure of Common task groups
 - for the three concepts to cooperate among themselves
- and with Detector R&D collaboration

Detector Concepts - ILD

- LDC + GLD
- 169 inst's (28 countries)
- VTX + SI + TPC + CAL + SC Mag (3~4T) + Muon
- PFA
- Versatile detector with high precision, high reliability

OD ~ 14.4m, L ~ 15m total

Detector Concepts - SiD

- 49 inst's (8 countries)
- VTX + Si-based tracker + Si/W ECAL + HCAL + SC Mag (~5T) + Muon
- Active use of Si technology
- PFA
- Versatile, compact detector with high precision, high reliability

Detector Concepts – 4th

OD ~ 12 .8 m, L ~ 15.4 m total

- 17 inst's (10 countries)
- VTX + Cluster-counting tracker (low-mass) + CAL with dual-readout + Iron-free dual-solenoid (~1.6T/3T) + CluCou muon tracker
- General-purpose detector with a very
 innovative approach to calorimetry, tracking and field configuration.

Global Efforts Onward for ILC – A Big Picture

Technical Design Phase 1 -- till mid-2010

- Demo. "Technical feasibility"
- igh-priority risk-mitigating R&D
- Value engineering (cost vs performance analysis) in selected areas.
- Re-baseline of the design as found appropriate and necessary.

Technical Design Phase 2 -- till 2012

- Demo. "Technical credibility"
- Refine the design
- Continued R&D
- Cost roll-up

IIL

• Development of a project implementation plan.

Detector Design Phase 1 -- till mid-2010

- Validation of detector concepts, to examine as integral parts of accelerator TDP.
- Focus R&D on critical elements; MDI design details.
- Update of physics performance
- Start-up of technical design work

Detector Design Phase 2 -- till 2012

- Refine the design
- Continued R&D
- Cost roll-up.
- Development of a project implementation plan.
- Actions in response to LHC results

Intention is to produce a report which can be handed ILC Talk, ICHEP 2008, 200808080 for evaluation in ~2012.

Conclusions (1)

- There is a large, coordinated, global effort on ILC,
 - Aiming at developing a project proposal with integrated accelerator and detectors designs, together with
 - A project execution plan,
 - Which can be handed to governments.
 - In the form of a document to be completed in 2012.
- For this, a renewed set of, coordinated, multi-prong, yet focused actions are being launched
 - Design evaluations, value engineering.
 - R&D on critical issues.
 - Expanded collaboration in selected areas.
 - Collaborative efforts between the detector R&D front under the Research Director and the accelerator under GDE.
- Check out the following URI for regular updates
 - http://www.linearcollider.org

Support the R&D, Support Design Effort
 – Because they will support you.

- Thanks are due to those who gave me their materials and help in preparing this talk:
 - B.Barish, S.Yamada, M.Ross, A.Yamamoto, J. P.Delahaye, M.Palmer, R.Geng, E.Elsen,
 A.Wolski, J.Brau, H.Yamamoto, J.Hauptmanm,
 T.Benhke, H.Weerts, and all within/around ILC
 GDE and Detector/Physics Groups.

Backup Slides

•

RDR Design & "Value" Costs

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

IL

Note: this is a snapshot and the design will continue to evolve, with inputs such as, results of the R&D, accelerator studies, value engineering

The value costs have already been reviewed twice

- 3 day "internal review" in Dec
 ILCSC MAC review in Jan
- Σ Value = 6.62 B ILC Units

Summary **RDR "Value" Costs Total Value Cost (FY07)** 4.80 B ILC Units Shared **1.82 B Units Site Specific** 14.1 K person-years ("explicit" labor = 24.0 M personhrs @ 1,700 hrs/yr) 1 ILC Unit = \$ 1 (2007)

One RF unit of ILC main linac

- Current baseline configuration of a unit RF system
 - 3 units of cryomodules
 - 10MW multibeam klystron driven by a bouncer modulator (work under way to replace it with a Marx generator-type modulator)
- Total 560 RF units in main linacs (e+ and e-)

IIL

ILC R&D Major Test Facilities

Test Facility	Acronym	Purpose	Host Lab	Operation start	Organized through:
Accelerator Test Facility	ATF	Damping Ring	KEK	1997	ATF Collaboration
Cornell Test Accelerator	CESR- TA	Damping Ring	Cornell 2008		Cornell
Superconducting RF Test Facility	STF	Main linac	KEK	2008	КЕК
TESLA Test Facility/ Free Electron Laser Hamburg	TTF FLASH	Main linac	DESY	1997	TESLA Collaboration, DESY
ILC Test Accelerator	ILCTA- NML	Main Linac	FNAL	2009	Fermilab
Beam Delivery Test Facility	ATF-2	Beam Delivery	KEK	2008	ATF Collaboration
End Station A (program terminated 2008)	ILC- SLA CES A	Machine – Detector Interface	SLAC	2006	SLAC

ILC Talk, ICHEP2008, 20080805

ilr iit

Accelerator: Mgmt Structure in GDE

GDE ILC Technical Design Phase

ilC

ILC Talk, ICHEP2008, 20080805

SCRF Project Management Structure

(March, 4, 2008, still to be updated)

Regiona - Director- - Director-H - Director-/	I/Intsitutional US: Mike Harrisor EU: B. Foster AS: M. Nozaki	Effort:	Technical Effort (ML (SCRF) Technology): - Project Manager: A. Yamamoto - Associate Managers: T. Shidara, J. Kerby, * Group leader, ** Co-leader									
Regions	Institute	Institute Leaders	Cavity (Process) L. Lilje*	Cavity (Prod./Int.) H. Hayano*	Cryomodule N. Ohuchi* -H. Carter**	Cryogenics T. Peterson*	HLRF S. Fukuda*	ML Integr. C. Adolphsen				
US	Cornell Fermilab SLAC ANL J-lab	H.Padamsee R. Kephart T.Raubenhaimer W. Funk	H.Padamsee M. Shekhar	C.Adolphsen	M. Champion	T.Peterson	R. Larsen	C. Adolphsen				
EU	DESY CERN Saclay Olsay INFN Spain	R.Brinkman J. Delahaye O. Napoly G. Wormser C. Pagani	L.Lilje TBD	L. Lilje TBD S. Pratt C. Pagani	Parma F. P.	Tavian						
AS	KEK Korea Inst. IHEP Indian Inst.	K.Yokoya	Hayano, Noguchi, Saito TBD	Hayano	Tsuchiya/ Ohuchi TBD	Hosoyama/ Nakai TBD	S. Fukuda	Hayano/Ohuchi				

How We Work Together?

Regional Effort and Project Management

- Project Managers are responsible for
 - Leading the world-wide technical development effort
 - efficiently and effectively
 - Setting technical direction and executing the project toward realization of the ILC
 - Day-to-day project execution and communication
- Regional Directors and Institutional Leaders are responsible for
 - Promoting, funding and authorizing the cooperation programs.
 - Formality to start institutional activities, and periodical oversiting the technical progress,

Basic Parameters

Prope	rties	of Mate	rials									
Material	Z	А	Radiatio	on length	Der	nsity	Electrical resistivity (at 0deg C)	Thermal conductivity	Coef of thermal expansion	Specific heat	Young's modulus	Poisson ratio
			g/cm	cm	g/cm (g/l for gas)		nano Ohm. M	W/m/K	micron / m / K	J/mol /K	GPa	
H2 gas	1	1.00794	61.28	731000	0.0838	[0.0899]						
H2 lig	1	1.00794	61.28	866	0.0708							
He	2	4.002602	94.32	756	0.1249	[0.1786]						
С	6	12.011	42.7	18.8	2.265							
N2	7	14.00674	37.99	47.1	0.8073	[1.25]						
02	8	15.9994	34.24	30	1.141	[1.428]						
Al	13	26.98154	24.01	8.9	2.7		26.5	237	23.1	24.2	70	0.35
Si	14	28.0855	21.82	9.36	2.33							
Ar	18	39.948	19.55	14	1.396	[1.782]						
Ti	22	47.867	16.17	3.56	4.54		420	21.9	8.6	25.06	116	0.32
Fe	26	55.845	13.84	1.76	7.87		96.1	80.4	11.8	25.1	211	0.29
Cu	29	63.546	12.86	1.43	8.96		16.78	401	16.5	24.44	110-128	
Nb	41	92.90638			8.57		152	53.7	7.3	24.6	105	0.4
In	49	114.813			7.31		83.7	81.8	32.1	26.74		
Sn	50	118.71	8.82	1.21	7.31		115	66.8	22	27.112	50	0.36
W	74	183.84	6.76	0.35	19.3		52.8	173	4.5	24.27	411	0.28
Pt	78	195.08	6.54	0.305	21.45		105	71.6	8.8	25.86	168	0.38
Pb	82	207.2	6.37	0.56	11.35		208	35.3	28.9	26.65	16	0.44

ilc

ILC Global Parameters

C	Slobal accelerator parameters for 500GeV cms (RDR Table			
	Parameter	Value	Units	
	Center of mass energy	500	GeV	
	Peak luminosity	2.00E+34	cm-2s-1	
	Availability	75	%	
	Repetition rate	5	Hz	
	Duty cycle	0.5	%	
	Main <u>linacs</u>			
	Average accelerating gradient in cavities	31.5	MV/m	
	Length of each main linac	11	km	
	beam pulse length	1	ms	$I_{ave} = eN/t_b$
	average beam current in pulse	9	mA	
	Damping Rings			
	Beam energy	5	GeV	
	Circumference	6.70	km	
	Length of Beam Delivery Section (2 beams)	4.5	km	
	Total site length	31	km	
	Total site power consumption	230	MW	
	Total installed power	300	MW	

ίiί

ILC Beam Parameters

E	Beam and IP Parameters for 500GeV cn					
	Parameter	Symbol/Units	Nominal	Low N	Large Y	Low P
	Center of mass energy	E_cm (GeV)	500	500	500	500
	Repetition rate	f_rep (Hz)	5	5	5	5
	Number of particles per bunch	N (1E10)	2.07	1.06	2.07	2.04
	Number of bunches per pulse	n_b	2625	5120	2625	1320
	Bunch interval in the main linac	<u>t_b</u> (ns)	369.23	189.23	369.23	480.00
	in units of RF buckets		480	246	480	624
	Main <u>linac</u> RF	GHz	1.3	1.3	1.3	1.3
	Average beam current in pulse	Laxe (mA)	9	9	9	6.8
	Normalized emittance at IP	γε× (mm.mrad)	10	10	10	10
		γεy (mm.mrad)	0.04	0.03	0.08	0.036
	Beta function at IP	β×* (mm)	20	11	11	11
		βy* (mm)	0.4	0.2	0.6	0.2
	RMS beam size at IP	σx* (nm)	639	474	474	474
		σy* (nm)	5.7	3.5	9.9	3.8
	RMS bunch length	σz* (microns)	300	200	500	200
	Disruption parameter	Dx	0.17	0.10	0.50	0.20
		Ωx	18.75	14.13	24.04	24.70
	Beamstrahlung parameter	Yave	0.048	0.05	0.038	0.097
	Energy loss by BS	δBS	0.024	0.017	0.027	0.055
	Number of BS photons	ny	1.32	0.91	1.77	1.72
	Luminosity enhancement factor	HD	1.71	1.48	2.18	1.64
	Geometric luminosity	Lgeo (1E34/cm2/s)	1.2	1.35	0.94	1.21
	Luminosity	L (1E34/cm2/s)	2	2	2	2
	Bunch train length	n_b×t_b (micro.s)	969	969	969	633
	Total beam power per linac per pulse	P_beam (MVV)	10.9	10.9	10.9	5.4

ILC Talk, ICHEP2008, 20080805

ilc

Cross section of a cryomodule

ILC Talk, ICHEP2008, 20080805

TD 1 Phase Resources – SCRF Facilities

			F	TE-Y	ears	S				to	tal M	&S		
		Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	total FTE-Years	Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	total M&S	
Americas	Canada	18					18	1050					1050	k\$
	USA	73	24	68	5	14	183	9169	3960	5909	134	362	19535	k\$
	China	12	8	8	4	1	33	10000	10000	10000	5000	1000	36000	kRMB
Asia	India	24	12				36	1560	900				2460	k\$
ASIa	Japan	45	6	11	4	5	72	2225	462	452	180	1119	4438	M JY
	Korea	13		5			18	1500		245			1745	M KRW
	EU (CERN)				1	4	5					129	129	kEUR
	France	94					94	10058					10058	kEUR
	Germany	51	10	7	7	9	83	1705	361			23.5	2089	kEUR
	Italy	38	8		1	1	48	1182	160				1342	kEUR
F	Poland													kEUR
⊏urope	Russia	2	20				22	20					20	k\$
	Spain		3				3		9				9	kEUR
	Sweden													kEUR
	Switzerland													kEUR
	UK													kGBP
		370	90	99	21	34	615							

İİ

TD 1 Phase Resources – Conv Facilities

		FT	E-Ye	ars		to ta	I M & S	;
		CFS	Controls	total FTE-years	CFS	Controls	total M&S	
Americas	Canada							k\$
	USA	12	18	30	1397	1098	2495	k\$
	China		8	8		1000	1000	k R M B
Asia	In d ia							k\$
ASIA	Japan	3	5	8				ΜJΥ
	Korea	1	1	2	40		40	MKRW
	EU (CERN)	2					0	keur
	France		18	18		307	307	k E U R
	Germany	3	14	17		63	63	k E U R
	Italy		4	4		80	80	k E U R
	Poland		20	20		248	248	k E U R
Europe	Russia	2		2	40		40	k\$
	Spain							k E U R
	Sweden							k E U R
	Switzerland		3	3		90	90	k E U R
	UK							k G B P
	(mixed)		11	11		95	95	k E U R
		23	102	112				-

İİ

TD 1 Phase Resources – Tech Accelerator Facilities

				FTE	E-Ye	ears	;		total M&S							
		Elec. Source	Posi. Source	Damping Rings	RTML	Beam Delivery	Simulations	total FTE-years	Elec. Source	Posi. Source	Damping Rings	RTML	Beam Delivery	Simulations	total M&S	
Americas	Canada			5				5			20				20	k\$
Americas	USA	11	8	28	1	48	16	113	617	144	7174	3	3847	190	11975	k\$
	China			12	4	20	2	38		500	5000	100	200	100	5900	kRMB
Asia	India															k\$
ASIA	Japan	2	7	16		23	4	52			722		375		1097	M JY
	Korea			2	2	4	3	12			26	26	201	26	279	M KRW
	EU (CERN)			2		1	4	7			7		2.3	8.6	18	kEUR
	France		11		5	12		27		390			6		396	kEUR
	Germany		22	3		4	4	33		32	7		36	14	88	kEUR
	Italy			17				17			300				300	kEUR
Furone	Poland															kEUR
Luiope	Russia															k\$
	Spain					2		2								kEUR
	Sweden				2	2		3								kEUR
	Switzerland															kEUR
	UK		10	11		85		106		35	62		1537		1634	kGBP
		13	57	97	14	201	33	415								

ΪĻ

Measurement of Electron Cloud (Kanazawa)

 RFA (Retarding Field Analyzer) type electron detectors with Faraday cup or MCP or multi-strip anode are installed to KEKB LER.

Electron Monitors (1)

Retarding field analyzer type electron monitors are set at pump ports of KEKB LER.

Pump port of KEKB LER

Electron Monitor (Modified Type)

- Comparison between Cornell-type thin RFA and APS-type
 - Almost consistent each other
- Newly developed RFA for CESR-TA
 - Dipole Chamber RFA

• Electron density can be estimated by measuring the phase shift of transmitting microwave

ECLOUD2 – Grooved Chambers Performance: M. Pivi

Electron cloud signal in stainless steel chamber.

Electron cloud signal in two smooth (flat) TiN-chambers and two grooved TiN-chambers installed in PEP-II.

İİL

Mitigation tests in Cesr TA: M. Palmer, Cornell

(M. Pivi)

Recommendation for mitigation as input for DR design: Discussion All

(M. Pivi)

DR element	% ring	Antechamber	Coating	Additional Mitigation	Remarks
DRIFT in STRAIGHT	33	No	NEG	Solenoid	Groove if necessary
DRIFT in ARC	56	Downstream of BEND only	NEG	Solenoid	Groove if necessary
BEND	7	Yes	TiN	Grooves and Electrodes	
WIGG	3	Yes	TiN	Electrodes and Grooves	
QUAD	1	Downstream BEND / WIGG	TiN	Grooves and Electrodes	

Preliminary table to be completed as input for Technical Design Phase. Goal is to turn all Red colors to Green in the next two years.

• Other mitigations under development! (ex: Carbon coating CERN)

CESR EC experimental areas

Experimental Plan at KEKB Positron Ring Grooved Surface, and Clearing Electrode Ver.2

Y. Suetsugu, H. Fukuma, KEK M. Pivi and W. Lanfa, SLAC

Use the serimental setup

(G. Dugan)

Plan of measuring cloud density in the solenoid field and in the quadrupole field K. Kanazawa (KEK) (G. Dugan)

SOLENOID

• Given a solenoid field and the position of detection, the energy of measured electrons is automatically selected (=the volume is automatically defined).

QUADRUPOLE

Electrons accelerated by a bunch along X-axis reach the detector.

Responding to LHC

• Systematic studies needed

ΪĹ

- When are we likely to know what from LHC?
 - Possible LHC discovery scenarios
- For each scenario
 - What physics modes to study at ILC
 - What kind of machine to build
 - What kind of detector to build
 - Priorities and timescale
- Cost and political realities to be included
- Rethinking of the machine parameter will be needed.
 - Energy (250 GeV, 360 GeV, 500 GeV, 800 GeV...)
 - Luminosity
 - Upgrade path
- Accelerator and physics/detector community should have close and intensive discussions
 - Cost and politics
 - GDE + the RD structure (we need name)