

Jeff Gronberg / LLNL October 30, 2008 Positron source collaboration meeting Daresbury

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

Global Design Effort

10/30/2008

Optical Matching Device

• What is it?

ΪĹ

- Point to parallel magnetic focusing optic after the target
- Why is it important?
 - Improves capture efficiency reduces photon flux required
 - Shorter wiggler
 - Lower heat load in target
 - Smaller dumps
 - Less radiation

Target Flux

A number of options have been considered

- The capture efficiency for the options have been simulated by SLAC/ANL/Cornell
 - Capture efficiency varies between 10% and 30%

- What are the options?
 - Nothing
 - ¼ wave solenoid
 - Pulsed flux concentrator
 - Immersed SC solenoid
 - Lithium lens

OMD	Capture efficiency
Immersed target (6T-0.5T in 20 cm) Eddy current show-stopper	~30%
Non-immersed target (0-6T in 2cm, 6T-0.5T 20cm) RDR baseline	~21%
Quarter wave transformer (1T, 2cm) Proposed new baseline	~15%
0.5T Back ground solenoid only	~10%
Lithium lens	~29% (~40%*)

* K=0.36 undulator

W. Liu

İİL

Technical Design Phase 1 R&D

- ¹⁄₄ wave solenoid
 - Achievable
 - Need to quantify fringe field interaction with target
- Lithium lens
 - Specific design, Mikhailichenko CBN 08-1
 - Beam survivability issues need to be quantified
- Flux concentrator
 - Needs engineering studies and design

Quarter Wave Transform

 Needs magnet expert to make a design

IIL

Detailed Lithium lens design exists

Mikhailichenko CBN 08-1

- Most mature OMD design we have
- Some engineering questions related to survivability:
 - What is the radiation damage in the windows from photo-nuclear reactions?
 - What is the stress-strain in the windows from heating?
 - Does thermal cycling cause fatigue?
 - Is there cavitation in the liquid metal?
 - If yes, will this erode the windows?

İİĹ

Pulsed Flux Concentrator

- Reduces magnetic field at the target
 - Reduced capture efficiency, 21%
- Pulsed flux concentrator used for SLC positron target
 - It is a large extrapolation from SLC to ILC
 - $1\mu s \rightarrow 1ms$ pulse length

ΪĿ

Similar devices have been created before

- Brechna, et al.
 - 1965
 - Hyperon experiment
- Very preliminary ANL and LLNL simulations do not indicate showstoppers
- No one has stepped up to claim this is "doable"

10/30/2008

ILC parameters are close to Brechna

Parameter	Brechna	ILC	Units
Field Strength	10	7	Т
Pulse Length	40	1	ms
Repetition Rate	1/3	5	Hz

J. Sheppard

- Extrapolation from Brechna to ILC is not large
 - Lower field
 - Lower pulse length
 - Pulse length x repetition rate is similar
- Requires significant design and prototyping effort

Proposed flux concentrator studies in 2009 at LLNL

- Simulation studies
 - Currents, heating and interactions
 - Cooling of the plates
 - Forces and shocks
 - Specify the drive current necessary for the device
- Straw man design of an inductive modulator to drive the device and maintain a constant field for the 1ms pulse

İİL

Phase 1 decision schedule

 Goal is to have R&D questions on the OMD answered by end calendar 2009 so that downselect can occur?

• New baseline in 2010?

İİĹ