Impact of minimal machine on physics and calibration

Gudrid Moortgat-Pick (IPPP) 29/10/08

- RDR positron source
- Calibration needs
- Physics
- Schemes

RDR Positron Source

- Positron source in RDR:
 - K=0.92
 - $-\lambda_{U}$ =11.5 mm
 - L=147 m (200 m)
 - E_{1st}= 10 MeV
 - E_b= 150 GeV
 - − B_{max}=0.86 T
 − P(e⁺)~45%

- Changes needed to do calibration at the Z-pole?
- How to optimize this option?
- •Could we replace GigaZ via calibration runs?
- Small positron polarization available

Polarimetry+energy workshop@Zeuthen 4/08

- executive summary sent to the GDE, please see arXiv:0808.1638
- since baseline design provides small polarization
 - flipping of helicity is required or destroy polarization completely (see talk of S. Riemann at LCWS07 and polarimetry workshop)
 - if even bunch compressor used: capture efficiency increased by factor 2, polarization raises up to 45%!......

Recommendation:

- 5. Implement parallel spin rotator beamlines with a kicker system before the damping ring to provide rapid helicity flipping of the positron spin.
- 6. Move the pre-DR positron spin rotator system from 5 GeV to 400 MeV. This eliminates expensive superconducting magnets and reduces costs.
- 7. Move the pre-DR electron spin rotator system to the source area. This eliminates expensive superconducting magnets and reduces costs.

Calibration Needs

- How many Z's are needed for calibration?
 - Experience from LEP2
 - After each annual shutdown:

10 pb/detector + couple of pb's over the year

- Calibration needed after annual shutdown
- No Z-pole calibration needed after push-pull
- For calibration: large emittance, low lumi tolerable (Scope 2)
- L_{cal}? About 7x10³¹ (Nick@Tesla) vs. 7x10³² (Andrei S)
 Has still to be worked out
- But stable energy, since $\Delta A_{LR} / \Delta \sqrt{s} \sim 0.2\%$ / GeV

Physics: Z-pole data

- Why do we need such data a.s.a.p.?
 - Discrepancy between A_{LR} and A_{FB}

SLD: $\sin^2 \theta_{\text{eff}} = 0.23098 \pm 0.00026 \quad (A_{LR}(\ell)),$ LEP: $\sin^2 \theta_{\text{eff}} = 0.23221 \pm 0.00029 \quad (A_{FB}(had)).$

- most sensitive tests of the Standard Model via measurements of the ew observables as $\sin^2\theta_{eff}$ We do need it already now !!!

Accuracy in sin²Ø_{eff}

$$A_{\rm LR} = \frac{2(1 - 4\sin^2\theta_W^{\rm eff})}{1 + (1 - 4\sin^2\theta_W^{\rm eff})^2}$$

- → precision in ALR directly transferred to sin²
 ⊕_{eff}
- $\stackrel{\text{\tiny T}}{=}$ GigaZ will provide $\Delta \sin^2 \Theta_{\text{eff}} \sim 1.3 \text{ x } 10^{-5}$ (if Blondel scheme)
- only electron polarization at GigaZ: ~9.5 x 10⁻⁵
- current value: 16 x 10⁻⁵
- What could we gain with a 'fraction' of GigaZ ?

G. Moortgat-Pick

Possible low lumi Z-data

	∫L	No. of Z's	$\int_{\text{days}} \mathcal{L}_{\text{cal}}$	$P(e^{-})$	$P(e^+)$	ΔA_{LR}^0	$\Delta A_{\rm LR}$	$\sin^2 \theta_{eff}$
	6 pb ⁻¹	$1.8 imes 10^5$	1	90%	0	—	2.7×10^{-3}	3.4×10^{-4}
				90%	40%	3.3×10^{-3}	4.4×10^{-3}	5.6×10^{-4}
				90%	60%	2.2×10^{-3}	3.0×10^{-3}	3.8×10^{-4}
	24 pb ⁻¹	$7.3 imes 10^5$	4	90%	0	—	1.5×10^{-3}	1.9×10^{-4}
				90%	40%	1.6×10^{-3}	2.2×10^{-3}	2.8×10^{-4}
				90%	60%	1.1×10^{-3}	1.5×10^{-3}	1.9×10^{-4}
	60 pb^{-1}	1.8×10^{6}	10	90%	0	—	1.1×10^{-3}	1.4×10^{-4}
				90%	40%	1.0×10^{-3}	1.4×10^{-3}	1.8×10^{-4}
				90%	60%	7.0×10^{-4}	9.4×10^{-4}	1.2×10^{-4}
	0.6 fb ⁻¹	18×10^{6}	100	90%	0		8.1×10^{-4}	1.0×10^{-4}
				90%	40%	3.3×10^{-4}	4.4×10^{-4}	5.6×10^{-5}
_				90%	60%	2.2×10^{-4}	3.0×10^{-4}	3.8×10^{-5}
	0.9 fb ⁻¹	27×10^{6}	150	90%	0	_	7.9×10^{-4}	1.0×10^{-4}
				90%	40%	2.7×10^{-4}	3.6×10^{-4}	4.6×10^{-5}
				90%	60%	1.8×10^{-4}	2.4×10^{-4}	3.1×10^{-5}
	1.2 fb ⁻¹	36×10^{6}	200	90%	0	_	7.9×10^{-4}	1.0×10^{-4}
				90%	40%	2.3×10^{-4}	3.1×10^{-4}	4.0×10^{-5}
				90%	60%	1.6×10^{-4}	2.1×10^{-4}	2.7×10^{-5}
	1.8 fb ⁻¹	54×10^{6}	300	90%	0	—	7.8×10^{-4}	1.0×10^{-4}
				90%	40%	1.9×10^{-4}	2.6×10^{-4}	3.2×10^{-5}
				90%	60%	$1.3 imes 10^{-4}$	$1.7 imes 10^{-4}$	2.2×10^{-5}

Table 4: Lumi at Z-pole $\mathcal{L}_{cal} = 7 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}, \ \sigma(e^+e^- \to Z \to had) \sim 30 \text{ nb}, A_{LR} = 0.154, \ \Delta P/P = 0.5\%, \ \mathcal{L}_{++,--}/\mathcal{L} = 0.1$

G. Moortgat-Pick

Physics gain with $\sin^2\theta_{eff}$ =3 x 10⁻⁵

- What are the important input quantities?
 - Mass of top:

	current theoretical:		
	intrinsic	$\Delta m_W^{\text{intr,today}} \approx 4 \text{ MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm intr,today} \approx 4.7 \times 10^{-5}$
	parametric		
	$\delta m_t = 1.8 \text{ GeV}$	$\Delta m_W^{\mathrm{para},\mathrm{m_t}} \approx 11 \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para, m_t} \approx 5.4 \times 10^{-5}$
	$\delta(\Delta\alpha_{\rm had}) = 35\times 10^{-5}$	$\Delta m_W^{\mathrm{para},\Delta\alpha_{\mathrm{had}}} \approx 6.3 \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para,\Delta\alpha_{\rm had}} \approx 12 \times 10^{-5}$
	$\delta m_Z = 2.1 \text{ MeV}$	$\Delta m_W^{\mathrm{para},\mathrm{m_Z}} \approx 2.5 \ \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para,m_Z} \approx 1.4 \times 10^{-5}$
	<u>fastana</u>		
	future parametric		0
	$\delta m_t = 2 \text{ GeV}$	$\Delta m_W^{\text{para},m_t} \approx 12 \text{ MeV}$	$\Delta \sin^2 \theta_{eff}^{para,int} \approx 6 \times 10^{-5}$
LHC	$\delta m_t = 1 \text{ GeV}$	$\Delta m_W^{\text{para,m_t}} \approx 6 \text{ MeV}$	$\Delta \sin^2 \theta_{eff}^{para,m_t} \approx 3 \times 10^{-5}$
	$\delta m_t = 0.1 \text{ GeV}$	$\Delta m_W^{\text{para},m_t} \approx 1 \text{ MeV}$	$\Delta \sin^2 \theta_{eff}^{para,m_t} \approx 0.3 \times 10^{-5}$
ILC ⁻			

- only progress if $\Delta_{exp} \leq \Delta_{theo}$

G. Moortgat-Pick

Strategy

- Collect calibration data from several years
 (maybe 5 y, proposal)
- Collect data from dedicated Z-pole runs with low lumi
 (25 days / year)
- 'Full' GigaZ would take about 5000 low lumi days (on basis of $L_{cal}=7x10^{31}$)
 - Makes no sense to aim for that
 - In case one had higher L_{cal} , one could think about that!
- GigaZ after ILC physic runs is late anyway....2025? (personal comment)
- But already with such a fraction of the GigaZ accuracy we gain a lot in physics!

Physics gain with $\sin^2\theta_{eff}$ =3 x 10⁻⁵

• Hints for new physics in worst case scenarios:

Schemes for e⁺ production

- How to achieve the Z-pole energy with e⁻ beam?
- Several possibilities:
 - Deceleration of e- beam after 150 GeV point

Problem:

- still to high for Z-pole: slight fine tuning with E_b needed
- some emittance dilution (probably ok)
- but large energy spread...... (probably not ok for calibration)

Undulator at 50 GeV

- Running of undulator at lower energy, Eb=50GeV
 - $E_{1st} \sim \gamma^2 / (1+K^2) / \lambda_U \sim 1 \text{ MeV}$ (too low for pair production, >2 MeV)
 - Several solutions:
 - a) Take only higher harmonics, e.g. from n=2,...,8
 - b) Use other K for calibration (assuming λ_U fixed)
 - K-> 0.3: E_{1st} ~2 MeV
 - Probably 7 x 10³¹ ok
- Higher emittance (beam sees full linac impedance) but for calibration probably ok
 - If problems: bypass solution
- What is about energy spread in this case?
 - 1.5% for 150 GeV -> at 50 GeV ?

How to reach the Z-pole?

- Other possibility:
 - use other e- source for undulator, but inject e- beam for calibration from DR after undulator ?

Probably too much effort, but should be studied

.....

What's with the 250 GeV option?

- If we use E_b=250 GeV, maybe choose E_{1st}~25 MeV
 - Running at 50 GeV leads to same problems at before
 - E_{1st} < 2 MeV, but taking either higher harmonics or changing K factor should work
 - By-pass solution in case emittance problems occur
- Option discussed at TESLA times
 - 2nd e+ source in remaining e- linac and 2nd undulator to get higher lumi
- Believe for calibration first option should be fine
 - Probably 7 x 10 31 ok

Conclusion + Open issues

- Different schemes possible for e+@Z-pole
 - Different options how to reach the Z-pole including by-pass,
 2nd source etc. should be studied
- Promising physics case for using low lumi Z-pole data
 - Powerful tests now and..... GigaZ would be very late
- Would it be possible to cost and build ILC piece-wise? (but layout for 500, of course)
 - Detectors at 500 position, but only drift lines after RF's?
 Steps, e.g., 90 GeV, 350 GeV, 500 GeV?