Activation and Capture Simulations

S. Riemann, A. Schälicke, A. Ushakov, D. Andrienko¹

DESY, Germany ¹Moscow Institute of Physics and Technology, Moscow, Russia

ILC Positron Source Collaboration Meeting

The Cockcroft Institute Daresbury Laboratory

October 29, 2008

Outline

Introduction

Remote Handling

- Activation of water
- Shielding thickness around target
- Activation of capture section
 - copper vs aluminium
 - AMD and Li lens

Li lens

- Magnetic field of lens
- Energy deposition in window

Outlook

FLUKA 2008 has been released (September 2008)

- Equivalent dose is a new "standard" detector
- New radioactive decay database now includes also conversion electron and Auger lines
- New event generator should significantly improve residual nuclei predictions
- Dose could be calculated for whole model only (contribution of different model parts into dose is not foreseen)
- Electric field is not implemented yet

- Target material: Ti6Al4V
- Undulator: K = 0.92, period = 11.5 mm
- No photon collimator
- Number of incident on the target photons: 7 · 10¹⁶ ph/s (positron capturing efficiency is 35%)

Activation of Water. Geometry of Target

ILC Positron Source Collaboration Meeting

A. Ushakov (DESY)

Activity of Target and Cooling Water after 5000 h of Irradiation and 0 s of Cooling Time

Activity of Target

El.	Z	А	A _{+0s} [Bq]	Err. %	Frac. %
Ti	22	45	$1.7\cdot 10^{12}$	0.5	26.4
Sc	21	47	1.6 · 10 ¹²	0.5	26.1
Sc*	21	45	1.0 · 10 ¹²	0.4	16.3
Sc	21	46	$6.3 \cdot 10^{11}$	0.5	10.0
Al*	13	26	$3.9\cdot 10^{11}$	0.2	6.2
Sc*	21	46	$3.8\cdot 10^{11}$	0.5	6.1
Sc	21	44	$2.0 \cdot 10^{11}$	1.5	3.2
Σ			$6.3\cdot 10^{12}$		

Activity of Water

El.	Z	А	A _{+0s} [Bq]	Err. %	Frac. %
0	8	15	4.9 · 10 ⁹	8.9	85.1
С	6	11	6.2 · 10 ⁸	15.4	10.7
N	7	13	1.4 · 10 ⁸	31.6	2.4
N	7	16	$6.7 \cdot 10^7$	46.8	1.2
0	8	14	$2.8 \cdot 10^7$	99.9	0.5
н	1	3	$4.4\cdot 10^6$	31.6	0.1
с	6	14	$2.5 \cdot 10^4$	31.3	<0.1
Σ			5.7 · 10 ⁹		

* Isomers

Activity of Target and Water

Activity of Water

after 1 week of cooling time

EI.	Z	А	T _{0.5}	A _{+1w} [Bq]	Err. %	Frac. %
н	1	3	12.3 y	$4.4\cdot 10^6$	31.6	99.4
С	6	14	5700 y	$2.5\cdot 10^4$	31.3	0.6

Shielding around Target

Modification of Model:

- 2m concrete wall has been added
- Target rim has been changed to the disk with radius of 1.5 cm
- Cooling water channel has been removed

Composition of Concrete

(2.34 g/cm [°])			
EI.	Frac. %		
Н	10		
С	23		
0	40		
Mg	2		
Si	12		
Ca	12		

Dose Rate

after 5000 h of irradiation and 0 s of cooling time

Personal dose: 20 mSv/year; 2000 h/year $\mapsto \dot{D}_{max} = 0.01 \text{ mSv/h}$

Activation of Capturing Section. Cu vs Al

Capturing Secting: AMD + RF Structure (1.8 m) + Solenoid (1.8 m)

Dose Rate. Cu vs Al

Dose Rate after 1 week (Cu)

Dose Rate after 1 week (AI)

Activity of Li Lens

after 1 week of cooling time

EI.	Z	А	T _{0.5}	A _{+1w} [Bq]	Err. %	Frac. %
Н	1	3	12.3 y	8.2 · 10 ⁹	2.5	33.0
Be	4	7	53.2 d	$2.5\cdot10^{10}$	12.7	67.0

Magnetic Field of Li Lens COMSOL Simulation, Daniil

Deposited Energy per Photon

Part	E [keV/ph]
Target	803.2
Be window (left)	11.6
Li	37.9
Be window (right)	6.5

$$\langle E_{ph} \rangle = 10.4 \text{ MeV}$$

Undulator Length = 131.6 m

Heat Dissipation in Li Lens (FlexPDE Calculations, Daniil)

Model assumption: Li laminar flow (10 m/s)

Full: Cycle=51 Time=1.0000e-3 dt= 5.7499e-5 P2 Nodes=483 Cells=218 RMS Err= 6.6e-4 Vol_Integral= 1.067437e-3

Temperature Map before Second Pulse

Full: Cycle=321 Time= 0.2000 dt= 8.8378e-4 P2 Nodes=693 Cells=320 RMS Err= 4.7e-4 Vol_Integral= 7.106305e-4

- Activation of water is about 5 GBq that is 3 order of magnitude less then activation of the target (for short time after source switch off)
- Main contribution in activity and dose rate of water for relatively long cooling times make the tritium (half-life is 12.3 y)
- 1.1 m concrete is required to reduce dose down to 0.01 mSv/h
- Al is preferable material for the capture section but dose is strongly dominated by activation of the target. Therefore, capture section made from Al could not help much.
- Activation of Li lens has been estimated
- Current feeds have significant impact on lens field
- Preliminary estimation shows that entrance lens window will not survive first beam pulse (at least for 10 m/s Li flow). More sophisticated heat transfer modeling is required