Ring/ERL Compton et Source for ILC

Why Laser-Compton ? i) Positron Polarization.

- ii) Independence
 - Undulator-base e⁺ : use e⁻ main linac
 - Laser-base e⁺ : independent
- iii) Polarization flip @ 5Hz (for CLIC @ 50 Hz)
- iv) High polarization (potentially <-- 1st harmonic)
- v) Low energy operation
 Undulator-base e⁺ : need deceleration
 Laser-base e⁺ : no problem

vi) Synergy in wide area of fields/applications

Status of Compton Source

Proof-of-Principle demonstration was done.

ATF-Compton Collaboration

Polarized γ-ray generation: M. Fukuda et al., PRL 91(2003)164801 Polarized e+ generation: T. Omori et al., PRL 96 (2006) 114801

We still need many R/Ds and simulations.

Status of Compton Source

Proof-of-Principle demonstration was done.

ATF-Compton Collaboration

Polarized γ-ray generation: M. Fukuda et al., PRL 91(2003)164801 Polarized e+ generation: T. Omori et al., PRL 96 (2006) 114801

We still need many R/Ds and simulations.

We have 3 schemes. Choice 1 : How to provide e- beam Storage Ring, ERL, Linac Choice 2 : How to provide laser beam Wave length (λ =1µm or λ =10µm) staking cavity or non stacking cavity Choice 3 : e+ stacking in DR or Not Laser Compton e⁺ Source for ILC/CLIC We have 3 schemes.

1. Ring-Base Laser Compton Storage Ring + Laser Stacking Cavity (λ=1μm), and e+ stacking in DR

S. Araki et al., physics/0509016

2. ERL-Base Laser Compton ERL + Laser Stacking Cavity (λ=1μm), and e+ stacking in DR

3. Linac-Base Laser Compton Linac + non-stacking Laser Cavity (λ =10µm), and No stacking in DR

Proposal V. Yakimenko and I. Pogorersky

T. Omori et al., Nucl. Instr. and Meth. in Phys. Res., A500 (2003) pp 232-252

Good! But we have to choose!

Laser Compton e⁺ Source for ILC/CLIC We have 3 schemes. 1. Ring-Base Laser Compton Storage Ring + Laser Stacking Cavity (λ =1µm), and e+ stacking in DR My talk today S. Araki et al., physics/0509016 2. ERL-Base Laser Compton **ERL** + Laser Stacking Cavity (λ =1µm), and e+ stacking in DR 3. Linac-Base Laser Compton Linac + non-stacking Laser Cavity (λ =10µm), and No stacking in DR Vitaly-san at Chicago Proposal V. Yakimenko and I. Pogorersky T. Omori et al., Nucl. Instr. and Meth. in Phys. Res., A500 (2003) pp 232-252

Ring/ERL Scheme for ILC

Compton Ring Scheme for ILC

- Compton scattering of e- beam stored in storage ring off laser stored in Optical Cavity.
- 5.3 nC 1.8 GeV electron bunches x 5 of 600mJ stored laser -> 2.3E+10 γ rays -> 2.0E+8 e+.
- By stacking 100 bunches on a same bucket in DR, 2.0E+10 e+/bunch is obtained.

ERL scheme for ILC

High yield + high repetition in ERL solution.

- 0.48 nC 1.8 GeV bunches x 5 of 600 mJ laser,
 repeated by 54 MHz -> 2.5E+9 γ-rays -> 2E+7 e+.
- Continuous stacking the e+ bunches on a same bucket in DR during 100ms, the final intensity is 2E+10 e+.

1000 times of stacking in a same bunch

Ring scheme and ERL scheme are SIMILAR

What is Reused Ring: Electron Beam ERL: Energy of the electron beam

What is Reused

Ring: Electron Beam

ERL: Energy of the electron beam

Collision / Operation

- **Ring:** Burst Collision (need cooling time)
- **ERL:** as CW as possible

What is Reused

Ring: Electron Beam

ERL: Energy of the electron beam

Collision / Operation

- **Ring:** Burst Collision (need cooling time)
- **ERL:** as CW as possible

Bunch Length

- Ring: Naturally Long (typically 30 psec)
- **ERL:** Short (can be less than 1 p sec)

What is Reused

Ring: Electron Beam

ERL: Energy of the electron beam

Collision / Operation

- **Ring:** Burst Collision (need cooling time)
- **ERL: as CW as possible**

Bunch Length

Ring: Naturally Long (typically 30 psec) ERL: Short (can be less than 1 p sec)

Bunch Charge Ring: Larger ERL: Smaller

Parameters and Choices of Ring/ERL scheme

Ring Scheme Parameters

Ring Scheme Parameters Burst Operation of Laser (Burst Collision) Need to cool Compton Ring Good for stacking in DR

Cooling time ~ 10 m sec

Ng / bunch = 2.3×10^{10} simulation by CAIN E=1.8 GeV, 0.6 J x 5 CP (assume) Ne-/ bunch = 3.3×10^{10} (5.3 nC / bunch) (assume) Bunch length ~ 1 p sec (assume)

Ne+/bunch = 2×10^8 Ne+(captured) / Ng = 0.8 % (assume)

We need 100 times of stacking in a same DR bunch. {10 stacking (<<1 ms) + cooling (~10 ms) } x 10 Burst Operation of Laser --> Burst Amplifier

ERL Scheme Parameters

l = 26 mA

(a) Ne/bunch = 1×10^9 $T_{b_to_b} = 6.15 \text{ ns}$ (160 pC x 160 MHz) (b) Ne/bunch = 3×10^9 $T_{b_to_b} = 18.5 \text{ ns}$ (480 pC x 54 MHz) (c) Ne/bunch = 1×10^{10} $T_{b_to_b} = 61.5 \text{ ns}$ (1.6 nC x 16 MHz) (d) Ne/bunch = 3×10^{10} $T_{b_to_b} = 185 \text{ ns}$ (4.8 nC x 5.4 MHz)

l = 26 mA

(a) Ne/bunch = 1×10^9 $T_{b_to_b} = 6.15 \text{ ns}$ (160 pC x 160 MHz) (b) Ne/bunch = 3×10^9 $T_{b_to_b} = 18.5 \text{ ns}$ (480 pC x 54 MHz) (c) Ne/bunch = 1×10^{10} $T_{b_to_b} = 61.5 \text{ ns}$ (1.6 nC x 16 MHz) (d) Ne/bunch = 3×10^{10} $T_{b_to_b} = 185 \text{ ns}$ (4.8 nC x 5.4 MHz)

I = 80 mA (too ambitious !?) (e) Ne/bunch = 3×10^9 T_{b_to_b} = 6.15 ns (480 pC x 160 MHz) (f) Ne/bunch = 1×10^{10} T_{b_to_b} = 18.5 ns (1.5 nC x 54 MHz) (g) Ne/bunch = 3×10^{10} T_{b_to_b} = 61.5 ns (4.8 nC x 16 MHz)

ERL repetition ($R_{rep} = 1/T_{b_to_b}$) ERL repetition and e+ Stacking How many stacks do we need? Number of gamma-rays Ng / bunch = 0.75×10^{10} simulation by CAIN assume E=1.8 GeV, 0.6 J x 5 CP, Ne=1x10¹⁰ Number of positrons Ne+ / bunch = 0.6×10^{8} assume Ne+(captured) / Ng = 0.8 % I = 26 mA (assume) R_{rep} (MHz) **160** 54 16 **Ne-/bunch** $1 \times 10^9 \quad 3 \times 10^9$ 1x10¹⁰ **Necessary N stack** 330 3300 1000

ERL repetition (R _{re}	$_{\rm p}$ = 1/T _{b_to_}	_b) conti	nued	
ERL repetition and e+ Stacking (continued) Max N stack is limited by time. T stack < 100 m sec				
I = 26 mA (assume) R _{rep} (MHz)	160	54	16	
Ne- /bunch	1 x 10 ⁹	3x10 ⁹	1x10 ¹⁰	
Necessary N stack	3300	1000	330	
Max N stack	5000	1600	500	
Max N stack is limited by D	R.			

How many stacks can we achieve ? --> Need study --> talk F. Zimmermann **ERL repetition** ($R_{rep} = 1/T_{b_{to_b}}$) continued

ERL repetition and Laser

R _{rep} (MHz)	160	54	16
L cavity (round trip)(m)	1.9	5.6	19
L cavity (end-to-end*)(m)	0.46	1.4	4.6

Reasonable size of stacking cavity?

Reasonable size of laser oscillator?

* assume 4-mirror cavity

Compton e+ Source for CLIC

ILC/CLIC common issues on Compton

- (1) Ne- in Compton Ring, beam stability
- (2) optical cavity
- (3) high quality and high power laser
- (4) choice of ERL parameters

- (5) energy compression before (pre-)DR
- (6) short damping time
- (7) e+ stacking

Necessary R/Ds for Ring / ERL scheme

Ring / ERL scheme R&D List

e+ stacking in DR simulation studies

talk F. Zimmermann

- **Compton Ring simulation studies**
- **ERL simulation studies**
- e+ capture (common in all e+ sources) Simulation study Collaboration with KEKB upgrade
- e+ production target

Laser

Fiber laser / Mode-lock laser

Laser Stacking Cavity experimental and theoretical studies

Prototype Cavities

(Hiroshima / Weseda /

2-mirror cavity

moderate enhancement moderate spot size simple control 4-mirror cavity (LAL)

high enhancement small spot size complicated control

Laser Stacking Optical Cavity in Vacuum Chamber

Summer 2007: Assembling the Optical Cavity

October 2007: Install the 2-mirror cavity into ATF-DR

γ-ray Generation with Laser Pulse Stacking Optical Cavity

(Hiroshima-Waseda-IHEP-KEK)

1.Achieve high enhancement & small spot size
2.Establish feedback technology
3.Achieve small crossing angle
4.Get experinence with e⁻ beam

We will detect 20 γ's/collision
in current configuration.
Test is on going.
(so far achieved 3 γ's/collision)
Goal: detect 400 γ's/collision

1.28 GeV S-band Linac

pulse stacking cavity

in vacuum chamber

e beam

Feedback to Achieve 3 Conditions

Cross Feedback Circuit (Sakaue)

We are moving from **2-mirror-cav to 4-mirror-cav.**

R. Cizeron

Spot size = 30 um Enhance = 1000 **2-mirror cavity**

Spot size = 10 um Enhance = 10000 **4-mirror cavity**

4-mirror cavity

confocal

Tolerance of 2-mirror cavity

Concentric Configuration and Confocal Configuration

4-mirror ring cavity

Equivalent Optics of the 4-mirror Cavity

tolerance : 4-mirror = 100 x 2-mirror

2D configuration

$$\mathbf{a} = \frac{\rho}{2} \cos(\alpha/2)$$

$$\mathbf{a} = \frac{\rho}{2} \frac{\rho}{$$

3D configuration

e⁻ beam compatible 4-mirror cavity

Summary

Summary 1

Laser Compton e+ source is attractive option for ILC/CLIC Independent system high polarization (potential) 5 Hz polarization flip (for CLIC 50 Hz flip) Operability

- wide applications
- 2. Three schemes are proposed

Ring Laser Compton for ILC ERL Laser Compton for ILC

My talk Today

Linac Laser Compton

3. Ring: We have a design of ring --> But still many questions What is the best way to cure long bunch length? very small momentum compaction? bunch compress/decompress? crab crossing? Do we need experiments (bunch compression, crab,...,)?

Ring Circumference? (Energy spread of e- beam)

- 4. ERL: Many basic parameters are NOT decided yet Repetition Rate of ERL = Repetition Rate of Laser charge/bunch continuous e+ stacking is possible?
- 5. We still need many R/Ds ---> Good! We have many funs. (a) e+ stacking, (b) Ring, (c) ERL, (d) e+ capture (e) e+ production target, (e) Laser (g) Laser stacking optical cavity All of R/Ds are very important and correlated. "Choice of Ring or ERL" and "Choice of Parameters" are highly depends on the results of the R/Ds.
- 6. We have the world-wide collaboration for Compton. Not only for ILC/CLIC e⁺ source. Also for many other applications.