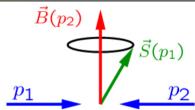
Depolarization at the ILC (BDS & IP) Tony Hartin

- Need depolarization from upstream polarimeter through to IP collisions so BDS and IP depol
- X Standard CAIN/GP results for IP depolarization are uncertain due to possible theoretical corrections
- X Calculation of beamstrahlung without kinematic approximations
- Higher order beam-beam effects, estimation of theoretical uncertainty in depolarization
- X BDS depolarization studies using BMAD

The 'usual' IP depolarization

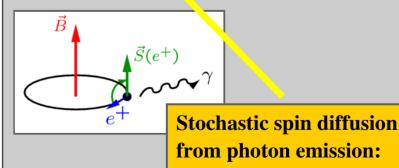
There is depolarization (spin flip) due to the QED process of Beamsstrahlung, given by the Sokolov-Ternov equation

$$\frac{dW}{d\omega_f} = \frac{\alpha m}{\sqrt{3}\pi \gamma^2} \int_z^{\infty} K_{5/3}(z) dz + \frac{y^2}{1-y} K_{2/3}(z)$$


$$where \quad z = \frac{2}{3\gamma} \frac{y}{y-1} , \quad y = \frac{\omega_f}{\epsilon_i}$$

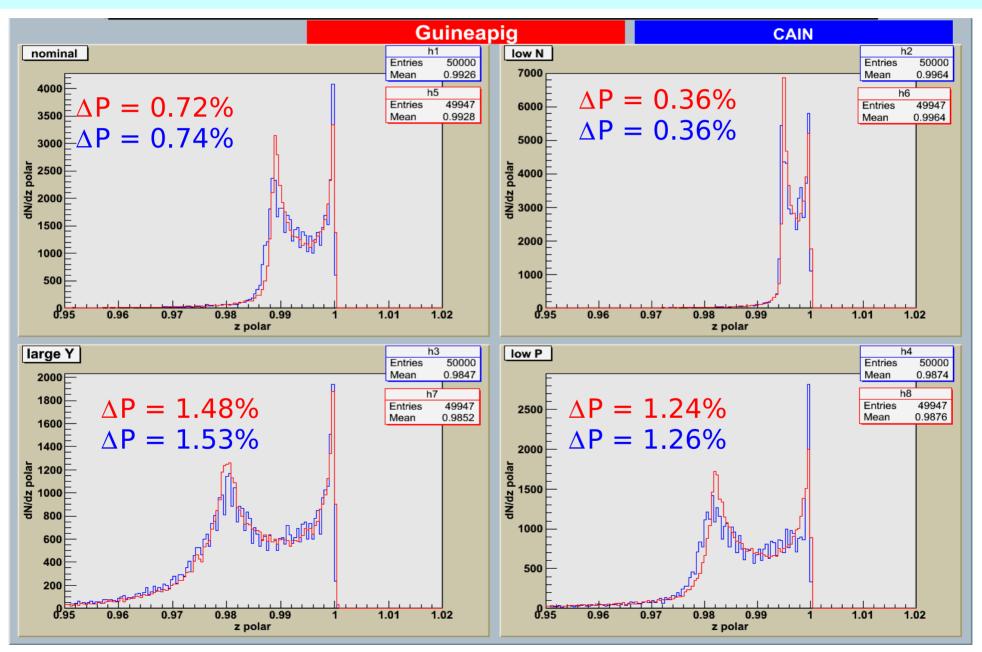
The fermion spin can also precess in the Bunch fields. Equation of motion of the spin given by

$$\frac{d\vec{S}}{dt} = -\frac{e}{m\gamma} \left[(\gamma a + 1) \vec{B}_T + (a + 1) \vec{B}_L - \gamma (a + \frac{1}{\gamma + 1}) \frac{1}{c^2} \vec{v} \times \vec{E} \right] \times \vec{S}$$

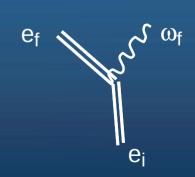

At the IP, the anomalous magnetic moment subject to radiative corrections in the presence of the bunch field

Classical spin precession in inhomogeneous external fields:
T-BMT equation.

Depol sims with CLIC parameters (I Bailey) change in polarization vector magnitude


	CLIC-G	ILC nom	ILC (80/30%)
T-BMT	0.10%	0.17%	0.14%
Beamstr.	3.40%	0.05%	0.03%
incoheren	0.06%	0.00%	0.00%
coherent	1 30%	0.00%	0.00%
total	4.87%	0.22%	0.17%

Sokolov-Ternov effect, etc.


Comparison of CAIN \neq GP++ total depolarization for e^- after beam-beam interaction: $\Delta P = 1 - \langle P \rangle$

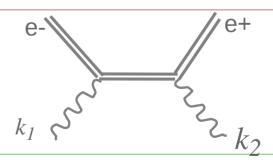
(P. Bambade, F. Blampuy (summer intern), G. Le Meur, C. Rimbault – LAL Orsay)

Generalization of Sokolov-Ternov

- Cenerally beam field is constant crossed electromagnetic field
- Use exact solutions of Dirac equation in the bunch field and include them at Lagrangian level
- Check agreement of full result with S-T in suitable limit

Solution of Dirac equation in Beam field Ae

$$[(p-eA^{e})^{2}-m^{2}-\frac{ie}{2}F_{\mu\nu}^{e}\sigma^{\mu\nu}]\psi_{V}(x,p)=0$$


$$\psi_{V}(x,p)=u_{s}(p)F(\phi)$$

Substitution of the general solution for ψ_V yields a first order differential equation. whose solution can be expanded in powers of ${\bf k}, {\bf A}^e$

$$\psi_{V}(x,p)=\left[1+\frac{e}{2(kp)}\gamma^{\mu}k_{\mu}\gamma^{\nu}A_{\nu}^{e}\right] \exp\left[F(k,A^{e})\right] e^{-ipx}u_{s}(p)$$

- make Fourier transform to get exponential of linear term in x
- · n external field photons contribute
- Fermion momentum gains $\frac{v^2}{kp}k$
- Leads to fermion mass shift $m^2 + v^2$
- F_2 are
 - Bessel functions for circular polarized Ae
 - Airy functions for constant crossed Ae

Usual'solution in the absence of Ae

fermion solutions represented By double straight lines

Beamstrahlung in an external field (Sok-Ter) - Nikishov & Ritus (1964)

Calculation first performed in a linearly polarized field

$$A_u = a_u \cos(k.x)$$

Volkov solutions introduce complicated functions B (I external field

$$B_n(I,\alpha,\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos^n k. x \, e^{f(k.x)} \quad \text{where} \quad f(k.x) = i \alpha \sin(k.x) - i \beta \sin(2k.x) - i I(k.x)$$

External field strength expressed by dimensionless parameter ν which has a direct relationship to field potential or strength and an $v = \frac{ea}{m} \propto \frac{B}{w}$ inverse relationship to the field frequency ω

$$v = \frac{ea}{m} \propto \frac{B}{\omega}$$

Constant field calculation performed for $v \rightarrow \infty$ ($\omega \rightarrow 0$)

Saddle point approximation used to write B_n as a function of Airy functions and the phase ψ of the slowly alternating external field $B_n \propto \frac{1}{v \sin \psi} \frac{Ai(y)}{\sqrt{v}}$ where $y = (\frac{v}{\sin \psi})^2$ other approximations also made

.Transformation to constant crossed field using solutions of a Schlömilch ean

if
$$W(B) = \frac{2}{\pi} \int_0^{\pi/2} F(B\sin\psi) d\psi$$
 then $F(B) = W(0) + B \int_0^{\pi/2} W'(B\sin\psi) d\psi$

Clearly it would be better to do the calculation directly in the constant field, for arbitrary n and without approximations - work in progress

Beamstrahlung in the Bunch field (no kinematic approximations)

Without going into details of the calculation the final results of the differential transition rate can be compared

$$\frac{dW}{d\omega_{f}} = \frac{\alpha m}{\sqrt{3}\pi y^{2}} \int_{z}^{\infty} K_{5/3}(z) dz + \frac{y^{2}}{1-y} K_{2/3}(z) \quad where \quad z = \frac{2}{3Y} \frac{y}{1-y} , \quad y = \frac{\omega_{f}}{\epsilon_{i}}$$

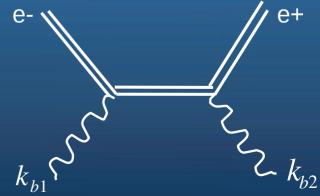
$$\frac{dW}{du}(1+u)^{2} = \frac{\alpha m}{\sqrt{3}\pi y^{2}} \int_{z}^{\infty} K_{5/3}(z) dz + \frac{y^{2}}{1-y} K_{2/3}(z) \quad where \quad z = \frac{2}{3Y} \frac{y}{1-y} , \quad y = \frac{\omega_{f}(1-\cos\theta_{f})}{\epsilon_{i}-|\vec{p}_{i}|\cos\theta_{i}-\omega_{f}(1-\cos\theta_{f})}$$

In the limit of ultra-relativistic e+/e-, $\epsilon_i \approx |\vec{p}_i|$, $\cos \theta_i \approx \cos \theta_i$ and the full calculation reduces to the Sokolov-Ternov equation

Spin flip rate has a similar dependence to that shown above

SENSITIVITY: whenever z is small i.e. when the radiated photon has low energy and significant angle Numerical studies underway

Sokalov-Ternov


Full calculation

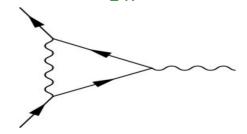
Higher order effects

Vertex correction leading to different anomalous magnetic moment

X Compton effect in the bunch fields

Work in progress

Anomalous magnetic moment in a strong field (IPPP - Durham)

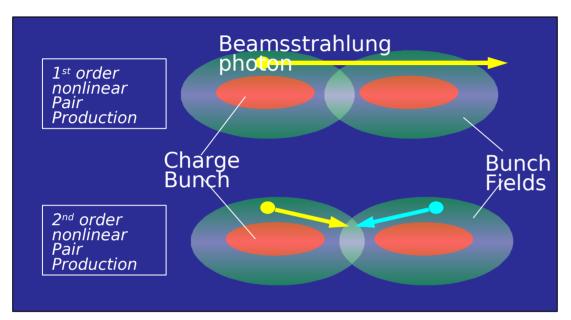

Needed in T-BMT equation to calculate the rate of depolarization due to Beam-

Beam effect

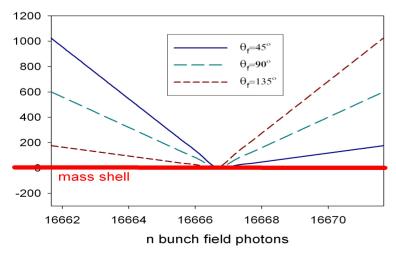
$$|\vec{\Omega} = -\frac{e}{m\gamma} [(\gamma a + 1)\vec{B}_T + (a + 1)\vec{B}_L - \gamma (a + \frac{1}{\gamma + 1})\frac{\beta}{c}\vec{e}_{\nu} \times \vec{E}]|$$

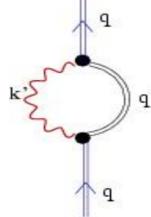
Main contribⁿ from vertex diagram

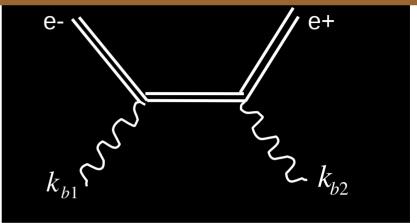
$$a = \frac{\alpha}{2\pi} + O(\alpha^2)$$


when fermion is embedded in a strong external field characterised by $Y = v^2 \frac{(k.p)}{m^2}$ the anomalous magnetic moment develops a dependence on Y and is given by (Baier-Katk)

$$a(Y) = -\frac{\alpha}{\pi Y} \int_0^\infty \frac{x}{(1+x)^3} dx \int_0^\infty \sin\left[\frac{x}{Y} \left(t + \frac{1}{3}t^3\right)\right] dt$$


However...we can envisage


- recalculating the vertex diagram in BIP with Volkov solutions replacing all fermion lines
- Making mass correction (including self-energies)


2nd order external field process: Coherent Breit-Wheeler (CBW) process

propagator denominator

- 2nd order process contains twice as many Volkov E_p
- Double integrals over products of 4 Airy functions mathematical challenge!
- spin structure same as ordinary Breit-Wheeler

fermions recieve a mass shift due to Bunch field and the propagator can reach mass shell whenever $r \omega \sim \omega_h$ 10/30/08 Slide 10

T.Hartin Positron Source meeting OctO8

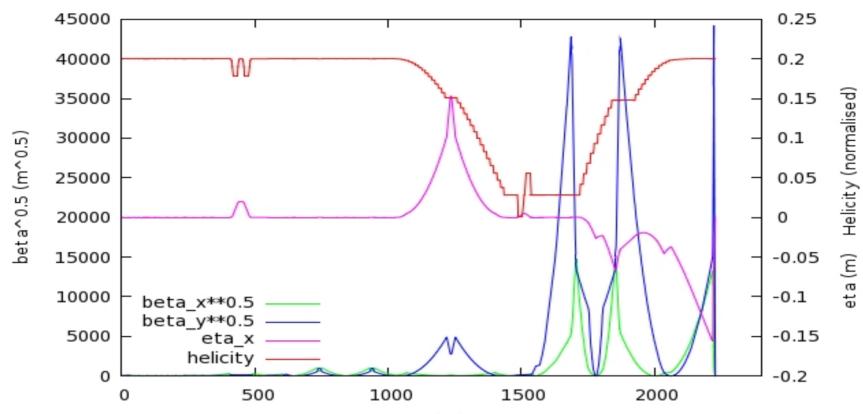
RESULTS - Depolarization at the IP

(I Bailey, A Hartin, G Moortat-PickEUROTeV-Report-2008-026)

	ILC baseline	CLIC-G
\sqrt{s}/GeV	500	3000
\sqrt{s} /GeV N /10 ¹⁰	2	0.37
n_B	2625	312
β_x^*/mm	20	4
β_y^*/mm	0.4	0.09
σ_x^*/nm	640	40
σ_v^*/nm	5.7	~ 1
$\sigma_z/\mu\mathrm{m}$	300	45
D_x	0.17	
Υ	0.048	1,
$L/10^{34} cm^{-2} s^{-1}$	2	2

Parameter set	Depolarization ΔP_{lw}			
	ILC 100/100	ILC 80/30	CLIC-G	
T-BMT	0.17%	0.14%	0.10%	
S-T	0.05%	0.03%	3.4%	
incoherent	0.00%	0.00%	0.06%	
coherent	0.00%	0.00%	1.3%	
total	0.22%	0.17 %	4.8%	

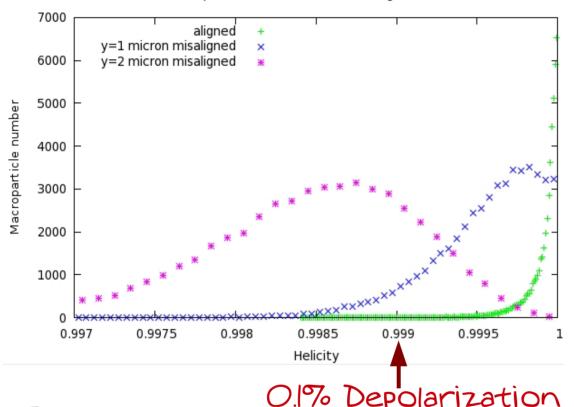
For ILC, Depol uncertainty estimated at $\pm 0.01 \pm 0.03\%$


- •theoretical refinements will reduce uncertainty
 - ·S-Tassumes classical dynamics of electron and no radiation angle
 - •HO Corrections to anomalous magnetic moment -> T-BMT
 - · Higher order intense field QED processes

BDS spin tracking

- X Placet to track beam through linac
- X BMAD for spin tracking in BDS
- X Add misalignments and track a real bunch train with feedback on

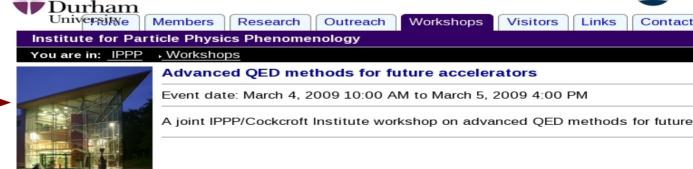
BDS Beam parameters



- Lattice translated from MADY to BMAD checked dispersion and Beta functions match TDR
- · Helicity normalised to 0.2 for ease of viewing
- spin precesses in the latter part of the lattice returning (almost) to original helicity

BDS depolarization

- Starting with 100% longitudinal polarization
- Introduce misalignments into linac and make I: correction with dispersion free steering
- Assume no depolarization in linac
- Make random misalignment of Bds elements in y


· To do:

- ·Make realistic misalignments due to expected ground motion
- · Crab cavity is in the lattice only as a drift at present!
- · Examine depolarization along a realistic bunch with feedback on
- · Track in the extraction line to downstream polarimeter

Summary & Future work

- (1) Full polarization treatment (Sok-Tern, T-BMT) and pair processes has been implemented in CAIN and Sok-Tern and T-BMT in GP++ - good agreement so far
- (2) Depolarization for ILC parameters is **Borderline** with the Budget But theoretical uncertainties can be further reduced
- (3) Present Sokolov-Ternov equation assumes small Upsilon, But larger values require more exact calculation using Volkov solutions
- (4) Previous Volkov solution calculations (1964) use several approximations calculation with no approximations in progress
- (6) Higher order IFQED processes being examined
- (7) spin tracking in BDS within BMAD will be performed for a realistic bunch train within the feedback loop

UPCOMING WORKSHOP

Advanced OED methods for future accelerators Event date: March 4, 2009 10:00 AM to March 5, 2009 4:00 PM

Outreach

Workshops Visitors

Please come!