

Current Target Actions

I. Bailey Lancaster University 30/10/08

Target Actions from Zeuthen Meeting

- Complete Eddy current tests at Daresbury Ian/Leo Nov 08 (store properly afterwards!) Tests starting now. See Leo's talk.
- Generate simulations to compare with experimental results Jeff / RAL?
 Nov 08
 Simulations started at both LLNL (C. Brown) and RAL (J. Rochford).
- Pressure shock wave analysis Stefan (next meeting) and numerical modelling – Tom (later) See Stefan's talk..
- Guarding thickness verification Tom (now) ?.
- Ensure consistency between ANL/DESY simulations Wei/Andriy (next meeting) Talks by Wei and Andriy yesterday. More discussion needed on future direction.
 - Energy compression before DR
- Lifetime studies of target (LLNL)
- Engineered solution, including prototype tests water, vacuum, ...
- Alternative liquid metal (BINP/KEK tests) Junji
- Where are ferrofluidic seals used Ian (next meeting) Next slide...

Ferrofluidic Seals

- Interested in seal characteristics in
 - Radiation environment (See studies by Luis Fernandez-Hernando, CI)
 - External B field (Likely to be negligible)
- Documented uses in 'similar' contemporary projects
 - ITER roughing pumps
 - RIA rotating beam dump

Ferro-fluidic seal tests by EUPT (FzK)

Tests with 250m³/h pump

Nick Balshaw, UKAEA, Culham, (March 2007)

Ferro-fluidic rotating shaft seal tests

Ferro-fluidic seals unit tested in rotating rig at FZK

•Helium leak tests of 125 days with seal rotating

•Leak rate in the range 10⁻¹⁰Pa.m³/s resulted

 Indication that perhaps leak rate increases with rpm (laminar-turbulent transition ?)

•On leak rate basis, meets ITER requirements

*250m³/h Roots pump procured from Roots Systems Ltd, fitted with ferro-fluidic seals and magnetic drive

*All stainless steel wetted parts with leak tight casing

Test continuing at FZK

This company has supplied 3000 m³/h Roots pumps for a neutron spallation source of a similar quality as required for ITER

 Ferro-fluidic seals look very promising for ITER forepumps

shaw, UKAEA

CERN Accelerator School, Platja D' Aro, Spain, 23 May 06, M. Wykes, ITER Vacuum Systems

Slide 26/40

Ferrofluidic Seals at RIA • S. Reyes et al, "Neutronics and radiation field studies for the RIA fragmentation Hub materials: NdFeB, Multipole (iron target area", NIM SmCo, Kapton, and copper) FerroFluid Water inlet/outlet Simulations carried out at pipes SS409 LLNL U beam 320 MeV/u 1 cm diameter Barrel dump (Al and water)

Table 1 Prompt dose and DPA rates to rotating seal materials

Material	Density (g/cm3)	Dose (MGy/yr)	Limit (MGy)	DPA/yr
NdFeB	6	0.29	0.1	4.5E - 06
SmCo	8.82	0.15	100	5.9E - 06
Kapton	1.42	0.74	10	7.6E - 07
Pseudo-FerroFluid	1.42	1.08		7.1E - 07

Irradiation of Ferrofluids

 P. Kopcansky, et al, "The Effect of Gamma-Radiation on the Magnetization of the Kerosene Based Ferrofluid", Radiat. Phys. Chem. Vol 34, 817 (1989).

Table 1. The parameters of unirradiated and irradiated samples of ferrofluid, χ_i —initial susceptibility, I_S —the saturation magnetization, n_0 —number of particles in unit volume, D_V —the median diameter, σ —the standard deviation

Dose (Gy)	χ_i/μ_0	Is (mT)	$\binom{n_0}{(10^{22}m^{-3})}$	D _ν (nm)	σ
0	0.745	6.51	1.89	12	0.336
4.5	0.65	6.15	1.71	12	0.305
17.3	0.45	4.85	1.21	12	0.258

Summary

- ITER studies show vacuum characteristics at high angular velocity.
- Need to follow-up RIA studies