EXT Dispersion Correction

James Jones Mark Woodley, Toshiyuki Okugi

Introduction

- Need to correct horizontal and vertical dispersion at the exit of the EXT line.
- We have:
 - All of the EXT line quadrupoles for the horizontal dispersion
 - QS1-2X and QK1-4X for the vertical plane
 - Also used for coupling correction
- Must minimise the dispersions, but also:
 - Minimise the change in Betas
 - Minimise the induced coupling

ATF EXT Layout

Previous Studies

Simulation Parameters

• use Lucretia¹ simulation code

• included

- perfect beam from Damping Ring ($\epsilon_x = 2 \times 10^{-9}$ m, $\gamma \epsilon_y = 3 \times 10^{-8}$ m) ... errors begin after extraction septa, unless otherwise noted
- perfect Final Focus
- dipole errors²: $\Delta Y = 100 \ \mu m \ (rms)$
- quadrupole errors: $\Delta X = 50 \mu m$, $\Delta Y = 30 \mu m$, $\Delta \theta = 0.3 m rad$ (rms)
- sextupole errors: $\Delta X = 50 \ \mu m$, $\Delta Y = 30 \ \mu m$, $\Delta \theta = 0.3 \ mrad$ (rms)
- BPM resolution: 5 µm (rms)
- not included
 - wire scanner rolls: $|\theta| \leq 0.2^{\circ}$ (uniform)
 - wire scanner beam size errors: $\sigma = \sigma_0(1 + \Delta \sigma_{relative}) + \Delta \sigma_{absolute}$
 - quadrupole strength errors ($\Delta K/K$)
 - BPM offsets
 - BPM rolls
 - tuning in FF

¹http://www.slac.stanford.edu/accel/ilc/codes/Lucretia/

²EXT dipoles BH1 and BH2 are assumed to have nonzero sextupole components

Simulation Procedure

- 1. apply errors
- 2. steer flat (EXT only)
- 3. launch into FF
 - use pulse-to-pulse feedback correctors and BPMs
 - BPMs are perfect
- 4. measure dispersion in diagnostic section
 - scan input beam energy
 - measure orbits
 - fit position vs energy at each BPM \dots linear correlation is η
 - back-propagate measured η to start of diagnostic section to get η_0 and η'_0
- 5. correct dispersion in diagnostic section
 - use QF1X + QF6X multiknobs for η_x and η'_x
 - correct η_y using QS1X + QS2X "sum knob"
- 6. correct coupling
 - scan skew quadrupoles sequentially
 - deduce projected ε_{ν} from wire scanner measurements
 - set each skew quad to minimize projected ε_{v}

horizontal dispersion

vertical dispersion

Simulation Results: σ_v^*

note: green lines show tracking for perfect machine (no errors, no corrections)

Simulation Results: ε_v

Skew Quadrupole Currents

Possible Issues

- It is unclear if we can use QF1X as part of the dispersion correction
 - May need to look at another 'knob' combination
- Currently there is an issue with passing off-axis in the QM7R quadrupole
 - Leads to an offset in eta-prime when eta is corrected to zero

Simulation Parameters

- Use MAD-8.23DL Code
- Assume:
 - Perfect damping ring beam
 - Perfect Final Focus
 - Dipole Errors: Transverse position:100µm (rms)
 - Quadrupole Errors: X=50µm, Y=30µm, T=0.3mrad
 - BPM Resolution: $10\mu m$ (*also tested with 0\mu m*)
- Not Included:
 - Wire scanner errors
 - Strength errors
 - BPM rolls and offsets
 - FF Tuning

Simulation Method

- Apply Errors
- Steer EXT only, including launch into FF
 - Global SVD based feedback
 - Uses FF launch correctors
- Optimise Dispersion
 - Use Simplex Optimiser with η_x 'knob'
 - Uses QD5X and QF6X (other combinations possible!)
 - Use Simplex Optimiser with η_v 'knob'
- Optimise Coupling
 - Minimise sum vertical beam size on wire scanners using QK1X and QK4X

Dispersion Correction

- Dispersion is measured by changing all of the magnets in EXT by set amount (±0.1%) and measuring beam position
- Dispersion is "corrected" by minimising
 - 2 x Dispersion at the last BPM
 - RMS dispersion in the last 8 BPMs
- BPM errors applied each time the orbit is measured

Horizontal Dispersion

16

Vertical Dispersion

17

Spot Sizes at IP

BPM Errors No BPM Errors

Emittances at IP

BPM Errors No BPM Errors

Corrector Magnitudes No BPM Errors No BPM Errors

Comments

- Have investigated several different combinations of quadrupoles for horizontal dispersion correction
 - All show "similar" results, but with differing strengths
 - Some show larger beta function effects
- Have tried to optimise vertical dispersion correction to deal better with incoming eta' effects
 - Simulations not yet ready(!), but seem to show a higher tolerance
 - Leads to a larger amount of coupling in the beam, which needs stronger skew quad requirements
- Analysis of dispersion measurement methods, shows that it should be possible to correct the dispersion without varying the ring RF
 - Not as accurate, but gives similar results

Next Steps

- Need to add-in realistic damping ring beams
 - Don't see this having much of an effect!
- Further investigation into QM7R issue (*ongoing*)
- Need to look at using QK1-4X as dispersion correction
 - Optimise which skew do dispersion correction, which do coupling correction