

Accelerator Test Facility

Commissioning to start in Dec. 2008

We got the temporary permission to operate ATF2 in Dec.. I think we will get the formal permission from MEXT in Jan.. Then, we can carefully operate ATF2 for beam commissioning. Thank you for your understanding in this situation.

Necessary Deliverables from TF for BDS and DR

Test Facility	Deliverable	Date				
Hardware development, Optics and stabilisation demonstrations:						
ATF	Demo. of reliable operation of fast kickers meeting the specifications for the ILC damping ring.					
	Generation of 1 pm-rad low emittance beam	2009				
ATF2	Demo. of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).					
	Demo. of prototype SC and PM final doublet magnets					
	Stabilisation of 35 nm beam over various time scales.	2012				
Electron cloud mitigation studies:						
CESR-TA	Re-config. (re-build) of CESR as low-emittance e-cloud test facility. First meas. of e-cloud build-up using instrumented sections in dipoles and drifts sections (large emittance).					
	Achieve lower emittance beams. Meas. of e-cloud build up in wiggler chambers.	2009				
	Characterisation of e-cloud build-up and instability thresholds as a func. of low vertical emittance (≤20 pm)	2010				
DAΦNE	Fast kicker design and pulser reliability check	2010				
	Characterisation of e-cloud build-up and instability thresholds	2010				
SLAC/LLNL	Fast kicker pulser development	2010				

Thanks to many colleagues from the ATF Collaboration those on these photo.

5th ATF2 Project Meeting, 19-21 Dec. 2007

7th ATF2 Project Meeting, 15-18 Dec. 2008

5

High-Intensity Compact X-ray Source

Must be demonstrated by JFY2012

Includes 25 MV SC acceleration and deceleration (but perhaps, deceleration can be omitted)

Beam current (9mA) and pulse length (1ms) same as ILC, but bunch spacing 6.15nsec

- Better to combine with STF2 for saving manpower and money
 - Build QB in STF tunnel
 - Identify 25MV acceleration cavity = STF capture cavity, though QB does not need 2 cavities
 - Can share the RF gun (but not the laser --- different pulse structure)
- But the price is the schedule delay
 - Interruption for at least half a year, likely ~1 year (installation of QB beam-line and tuning for X-ray)
 - To minimize the delay, plan to finish QB before 2012 summer vacation.

2. Photo-cathode RF gun Cs₂Te Photo-cathode, 1.6 Cell S-band RF Gun Multi-bunch beam generation

Figure 1: A schematic layout of the RFGTB

Figure 2: Cross section of the RF gun and the cathode plug.

8

Figure 4: Schematic view of experimental setup

upper-right : 100 bunches on the OTR screen, bottom figure : energy of each bunch in the train

er Pulse Stacking Chamber, 3m long S-band accelerating tube a **Photo-cathode RF Gun**

Collision point

Faraday Cup Top view BPM C Isolenoid BPM **BPM BPM** ∎. E ₽ RF Gun Q-magnet S-band accelerating tube (3m) PRM Q-magnet **PRM** Bending Cathode: Cs-Te Chicane magnet e⁻ beam **Emittance measurement** Side view **ICT & Faraday Cup: Beam current monitor BPM: Beam position monitor** PRM **BPM PRM: Beam Profile Monitor** OTR target or Al₂O₃ (Cr³⁺ doped)

Beam energy and energy spread measurement

X-ray Generation

43MeV end station to separate X-ray and e-beam. 33keV X-ray is deflected by Crystals.

Pulsed laser stacking cham

Burst mode cavity parameters

^P Pulse length (FWHM)

2.5 W 80 200 40 kW 112 uj/pulse 210.5mm 99.6% 30.3 um 878.5 420 mm 7ps

R/D Status in Japan

Moderate Enhancement ~ 1000 Moderate spot size ~ 30 micron Simple cavity stucture with two mirrors Get experinence with 43MeV and 1.3GeV e- beam

Laser Undulator Compact X-ray (LUCX) Project at KEK-ATF 43MeV Multi-bunch beam+ Super-Cavity = 33keV X-ray. Expected X-ray is generated.

4. Quantum beam project Characteristic of proposed machine

Compact (less than 10m) **quasi-monochromatic** (less than 1%) High Flux (100 times than Compact normal Linac X-ray : 10¹¹ photons/sec 1% b.w.) High Brightness (10¹⁷ photons/sec mrad² mm² 0.1% b.w.) Ultra-short pulse X-ray (40 fs ~)

SCRF acceleration techn

Structural genetic analysis, evaluation,

Nano-material

Highly fine X-ray Imaging

http://mml.k.u-tokyo.ac.jp/

SCRF Cavity

Ultra-low loss(10nΩ)
→long pulse acceleration
→high intensity and low emittance

Pulsed laser storage

Storage energy : 100 times Beam size < 8 μm

aser Inverse Compton scattering

High intensity, high quality, monochromatic X-ray

Photo-cathode RF gun

Low emittance beam 3mmmrad Short pulse, 162.5MHz bunch train 400 times by CW operation : ERL

Pulsed Laser

From 2-mirror cavity to 4-mirror cavity

0.5 mJ / pulse, waist = $30 \,\mu m$

Beam orbit control Achieved by ATF

Laser wire waist : $\sigma \sim 3 \,\mu m$ Electron beam size : $\sigma \sim 2$

μm

Annual Schedule and Budget

Item	2008	2009	2010	2011	2012
S. Cavity Development (\$1.5M/year), HRF + Cly (\$0.8M/year)	Upgrade of Compact RI Control sys	SC Cavity per ^F power sourc tem for SCRF			
Electron Source (\$0.5M/year)	High Q and 500 kV DC H High Intens	long life phot ligh Voltage ity Beam Gene	o-cathode eration	Construct Accelerator the pe	tion of Test r · Confirm erformance
Pulsed Laser Storage System (\$0.4M/year) X-ray Detector (\$0.1M/year)	Design and X-ray Detec	R&D on laser tor	storage		

Impact by Compact High Brightness Photon Beam

1) Performance of 2nd Generation PF will be obtained in usual Lab. Space!

2) Sub-psec X-ray is generated→Study fast transient phenomena

Chemical reaction in solvent, Activity of protein, Impulse destroy, Photon induced phase transition

3) Precise Nuclear Isotope detection by NRF (Solve energy and 24 environmental problems)

Target of component technology

technology	Present status	Target	Key points
Electron source	300 nC/pulse 10,000nC/pulse (2008-2009)	48,000 nC/pulse (2010-2012)	Pulse laser, new photo- cathode, 1 msec pulse length
SC Cavity	Pulse: 25 MV/m CW: 12 MV/m	Pulse: 30 MV/m CW: 20 MV/m	Non-defect and clean surface, Precise electron beam welding, High precision forming, Non- contamination material
Pulsed laser storage	0.5 mJ/pulse, Waist: 30 μm	50 mJ/pulse, Waist: 8 μm	4-mirror optical cavity
Colliding control	μm beam orbit control	Sub- μm beam orbit control	minimizing environmental effect, Fast feedback control

Quantum beam project(2008-2012) approved by MEXT Compact high brightness X-ray source using SC Cavity

Join and Enjoy 忘年会(End year Party) in this evening.

Thank you for your attention.