

Background measurement @ ATF2 (KEK) What could be learned @ ATF2 that could be valid for ILC ? Hayg GULER Marc VERDERI

LLR-Ecole Polytechnique Palaiseau, France

n 7th ATF2 Project Meeting, 195-18 December 2008

Outline

- Motivations : why do we want to measure the background @ ATF2
- Where and what we plan to measure the background
- Set of aparatus we are working on
- Conclusion : propositions for measurements

ILC background sources

- Machine produced background before IP
 - > Beam tails (halo) from linac
 - Synchrotron radiation
 - > Muons
 - > Beam-gaz scattering
- Beam Beam background @ IP
 - > Beamstrahlung
 - > Coherent/incoherent pair prodution
 - > Hadron prodcution
- Spent beam background
 - > Backscattering of particles (specially neutrons)

ILC vs ATF2 background sources

- Machine produced background before IP
 - > Beam tails (halo)
 - > Synchrotron radiation (small @ ATF2)
 - > Muons
 - > Beam-gaz scattering
- Beam Beam background @ IP
 - > Beamstrahlung
 - > Coherent/incoherent pair prodution
 - > Hadron prodcution
- Spent beam background
 - Backscattering of particles (specially neutrons)

Tools common to ATF2 and ILC

- BDSIM : Beamline Simulation toolkit based on GEANT4
 - Beam and halo transport
 - GEANT4 simulation of lost particles
- BDSIM is used for ILC studies
- Opportunity to test this tool @ ATF2 (in a particular conditions/context)

Background sources @ ATF2

Beam halo && Beam gas scattering

»From where the halo has been generated ?

»From which "parameters" does it depends ?

- » Beam tube gas pressure
 - > Beam-gas scattering
- > Othere particles processes
 - > Touschek scattering, Intra-beam scattering, ...
- > Optics related effects (non scattering process)
- » Collective and equipment related (Wake-fields, ...)

»Possibilities @ ATF2 in HALO measurement

- Measure the beam Halo @different positions
 - > Test the beam halo transport

Example losses vs Z (BDSIM)

- Provide information on the beam halo distributions
- Provide a test of the "use of" the BDSIM simulation
- PLIC measurement desirable as well as all available detectors

Beam gaz scattering

Elastic scattering

- Mott scattering : deflexion by the Coulomb potential of the particles in the residual gas
- Elastic scattering changes the direction of the beam particles while the energy is not affected
- > Create Halo \rightarrow Losses
- Inelastic scattering
 - Dominant process at high energy
 - > Bremsstrahlung with the residual nucleon gas
- Can be tested @ ATF2 ?
 - Record the beam-pipe gas pressure
 - Possibilities to changes the beam-pipe gas pressure ?
 - Measure related impact on background
 - Related to beam halo measurement
 - > Additionnal background ?

Backscattered production

- Iron made beam DUMP
 - > 1.3 GeV e- hitting the DUMP
 - Shielding around the beam-DUMP interaction region
- Electromagnetic background
 - Low energetic photons (mainly X rays)
 - > Backscattered electrons
- Hadronic background (neutrons)
 - Mainly produced by photo-production
 - Slower component : nucleon-nucleon effects
 - Delayed from EM background
 - > Use TOF to separate from EM background

Test neutron production models @ ATF2

- Many models (physics lists) describe neutron production in GEANT4
 - > 1 process -> many possible models -> many cross sections
 - > A process
 - > uses cross sections to decide when and where an interaction will occur
 - > uses an interaction model to generate the final state
 - For each process default cross sections
 - > some contain only a few numbers to parameterize cross section
 - > some represent large databases
- Simulation : Use the ATF2 (1.3 GeV e-) beam hitting the iron DUMP
- Compare different physics lists

Neutron production for 3 "models"

QGSP

- Quark-Gluon string with precompound
- Precompound call nuclear desexitation routine
- > 12 GeV \rightarrow 50 TeV

BERT

- > BERTini cascade
- Unique evaporation model to de-excite the remnant nucleus
- > Up to 10 GeV

HP

- High precision neutron
- Allow precise transportation of neutrons

LHEP

- Low and high energy parametrized
- > Fast parametrized model based on GHEISHA
- Average energy and momentum are well described

BDSIM user defined Hadronic Physics list

Where ?

Proposal for dedicated measurements (in addition to those provided by PLIC, Shintake, ...)

HALO : Background measurement

- Around Shintake Detector Area

Wire Scanner generated background measurement

Backscattered γ/X and neutrons inside beampipe

Backscattered γ/X and neutrons:

 Use TOF to separate forward brem, backscattered photons, backscattered neutrons
 Possibility to measure neutrons, and be sensitive (?) to rebounds in the beam pipe
 Enough space to measure ?

Backscattered Background @ different distances from beam DUMP

Backscattered neutrons from DUMP

Backscattered neutrons from DUMP

Backscattered neutrons from DUMP

Can use **Paraffin** to moderate fast neutron to separate fast neutrons from thermal neutrons

How?

Set of apparatus we are working on

Detector Concept

- Constraints :
 - > (small amount of) money to build the detector
 - > Places @ ATF2 to measure background
- Need a flexible (evolutive) detector
- Need a mobile detector
- Need an hybrid detector
 - > To detect e.m background
 - X rays, gammas, electrons
 - Neutrons
 - Fast and slow component

Our detectors – so far

> 3 pure Csl detectors >60mm*60mm*20mm >UV filter (keep UV) 5 Plastic scintillators (BC-408) >60mm*60mm*38mm Readout : > Photomultiplier >Oscilloscope

Figure 1. Scintillation emission spectrum of

Detection devices

x 5

х З

Adaptable configuration, eg: Lead Brick

Mecanical drawing

What do we need on site

- We would need to measure background
 @ any place along the ATF2 beamline
- No definite place has been define
 - Need to send our signals from everywhere
 - Need to know our detector position with a good precision
- One need to keep the flexibility the change the detector position as often as needed.
 - > Oscilloscope will be used from the beginning
 - > Other solution would come later on
 - Dedicated electronic

Time Schedule & Calibration

- November-December 2008 :
 - Receive all crystals from Saint-Gobain
 - Build the detectors
- December-January :
 - E.M calibration :
 - > Use radioactive sources @ LLR
 - > Use DESY e- beam (1 to 6 GeV) ?
 - > Any possibility @ KEK ?
 - Calibration to neutron signal :
 - Need to calibrate neutron response :
 - Neutron beam @ saclay (France) ?
 - > @KEK ? Others ?

Time Schedule

Plan of New ATF Beam Schedules

preparation of radiation inspection

radiation inspection

fast kicker study (cannot extract the beam)

To measure list (preliminary)

What	Where	Detector	Additional device	Additional detector	Remarks	Shifts needed (hours)
Backscattered neutrons	Around the beam dump	Complete detector	Lead brick and paraffin		TOF	1*8h + parasite
Neutrons in beam pipe	Around the Shintake detector area	Complete detector	Lead brick and paraffin		TOF	1*8h + parasite
Beam HALO	Around the Shintake and LW area	Complete detector	Lead brick and paraffin	Shintake detector + LW detector + PLIC + WS	Measure the halo @ different places	1 * 12h + parasite
Beam-Gas scattering	Around the Shintake and LW area	Complete detector	Lead brick and paraffin	Shintake detector + LW detector + PLIC + WS	Change the beam gas pressure	2 * 8h
Wire-scanner background	Around the Shintake and LW area	Complete detector	Lead brick and paraffin	Shintake detector + LW detector + PLIC + WS	Measure the background angular distribution	2 * 8h
Losses	Along the beam line	Complete detector	Lead brick and paraffin	Shintake detector + LW detector + PLIC	Measure background + losses @any z and any time	1 * 8h + parasite

Some slides concerning ILC simulations concerning neutrons

Neutron Production – Energies

ILC European Regional Meeting, RHUL, 2005-06-21

A. Vasilescu & G. Lindstroem

Thanks !

Csl crystals

S cintillator	Light yield (photons/keV)	Light ouput (%) of NaI(TI) bialkali pmt	Temperature coefficient of light output (%,C) 25°C to 50°C	1/e Decay time (ns)	Wavelength of maximum emission λm (nm)	R efra ctive index a t λ,m	Thickness to stop 50% of 662 keV photons (cm)	Thermal expansion (/C) x 10 ⁻⁶	C le avage pla ne	Hardness (Mho)	Density g/cm ³	Hygros copic	C omme nts
Nal(TI)	38	100	-0.3	250	415	1.85	2.5	47.4	<100>	2	3.67	yes	General purpose; excellent energy resolution
Polyscin ^R Na I(TI)									none				Polycrystalline NaI(TI); for extra strength;
CsI(TI)	54	45	0.01	1000	550	1.79	2	54	none	2	4.51	s lightly	High Z; rugged; good match to photodiodes and red pmt
CsI(Na)	41	85	-0.05	630	420	1.84	2	54	none	2	4.51	yes	High Z; rugged; good match to bialkali pmt
CsI(pure)	2	4-6	-0.3	16	315	1.95	2	54	none	2	451	slightly	High Z; Fastemission

- Pure CsI used @ATF/KEK: Fast (16ns decay time) but low light signal (2 γ/keV)
- Sensitive to full E.M + Nuclear background ③
- Can use PMT to "collect" signal photons
- > Don't need pre-Shower system
- ► Use TOF to separate neutrons from E.M background ☺

BC-408 plastic scintillators

> Useful to have a second detector which reacts in different way than pure-CsI

Different response to neutron detection

- > Can separate e- from gamma (use lead pre-shower or not)
- ▹ Very large light output ☺
- » Rise time : 0.9 ns
- Decay time : 2.1 ns
- Capability to separate neutrons from E.M background ?
 - > Use TOF to discriminate neutrons from E.M background

Event Biasing in BDSIM \rightarrow How ?

Geometry Based Biasing

Importance Sampling

- → Geometry splitting with Russian roulette
- Weight Windows
- Weight cutoff
 - → Also known as weight roulette

- Above biasing methods implemented within a common framework in Geant4
 - → Process based approach biasing is applied through a G4VProcess
 - → Apply in mass or parallel geometries divided up into cells
 - A cell is a physical volume, specified by replica number if applicable
 - Solution Control Co

Movie BDSIM

CsI vs Plastic scintillator (1 MeV)

CsI vs Plastic scintillator (1 GeV)

Hybrid

- The background @ ATF/ATF2 has an electromagnetic component generated by the electron beam HALO hitting the beampipe (and other accelerator components). In addition the electron beam hitting the beam dump generate backscattered electromagnetic background.
- The Hadronic component is mainly coming from the beam dump, mainly composed by backscattered thermal neutrons.
- The calorimeter "final aim" is to measure and characterize the background. One possible solution is to use different crystals sensitive to each background component (photoms, electrons, thermal neutrons, fast neutrons, ...).

Use additionnal information

Goal :

Have a detailled time dependent picture of the losses and background @ any place around the ATF2 area beamline

- \succ Use WS information \rightarrow Know beam Size
- > Use LW information \rightarrow Measure background = f(time)
- > Use Shintake photon detector information

Measure background = f(time)

Use PLIC information : measure beam losses = f(time)

Our plans in background measurement

- Forward background
 - Measure the beam HALO and transport
 - Measure the beam losses and compare to simulation (BDSIM)
 - Evaluate the beam-gaz scattering
 - Measure the backscattered electromagnetic background
- Characterize the hadronic background
 - Measure the backscattered neutron background from the beam DUMP (separate it from the E.M background)
 - Measure neutrons background @ any place
 - Fest the neutron transport in BDSIM