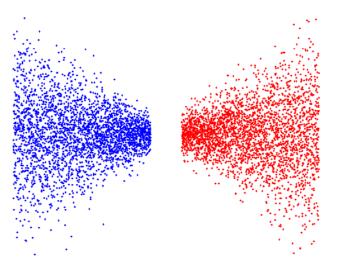
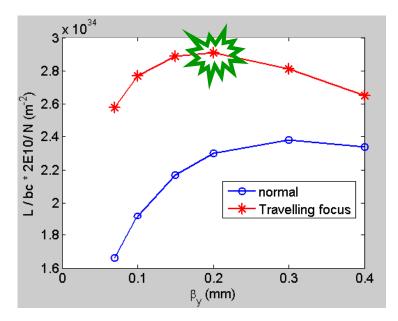

Crab cavity tests at ATF2? for discussion

Peter McIntosh, Andrei Seryi

7th ATF2 Project meeting December 15-18, 2008

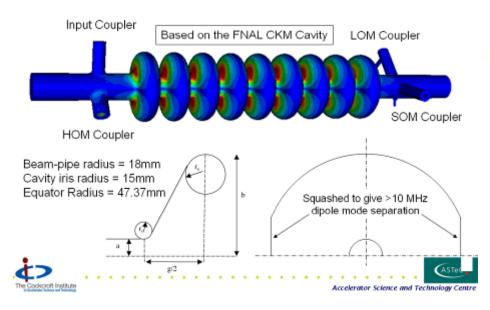
- The "low power" option may be a **machine** "cost saving" set
- The RDR "Low P" is not a favorite set for detectors:




• Improved version of Low Power may require tighter IP focusing, and use of "travelling focus" [V.Balakin, 1990]

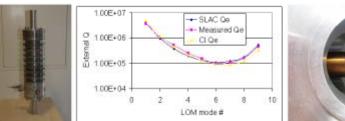
New low P parameters

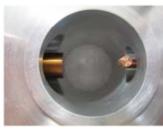
	Nom. RDR	Low P RDR	new Low P
E CM (GeV)	500	500	500
Ν	2.0E+10	2.0E+10	2.0E+10
n _b	2625	1320	1320
F (Hz)	5	5	5
P _b (MW)	10.5	5.3	5.3
γε _x (m)	1.0E-05	1.0E-05	1.0E-05
γε _γ (m)	4.0E-08	3.6E-08	3.6E-08
β x (m)	2.0E-02	1.1E-02	1.1E-02
β y (m)	4.0E-04	2.0E-04	2.0E-04
Travelling focus	No	No	Yeş
Z-distribution *	Gauss	Gauss	Gauss
σ _x (m)	6.39E-07	4.74E-07	4.74E-07
σ _y (m)	5.7E-09	3.8E-09	3.8E-09
σ _z (m)	3.0E-04	2.0E-04	3.0E-04
Guinea-Pig δ E/E	0.023	0.045	0.036
Guinea-Pig L (cm ⁻² \$ ⁻¹)	2.02E+34	1.86E+34	1.92 E +34
Guinea-Pig Lumi in 1%	1.50E+34	1.09E+34	1.18E+34



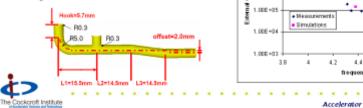
P.McIntosh, A.Seryi, December 15-18, 2008

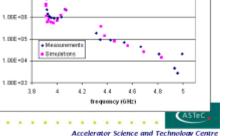
ILC-CC Design



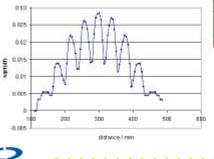


Prototype LOM Qe Measurements


1.00E+07


¢

The LOM coupler was found to give good agreement with both MWS and Omega3P simulations.



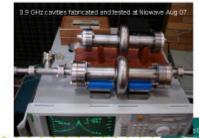
Structure Characterisation

- Model fabricated at DL and used to evaluate:
 - Mode frequencies
 - Cavity coupling
 - HOM, LOM and SOM Qe and R/Q

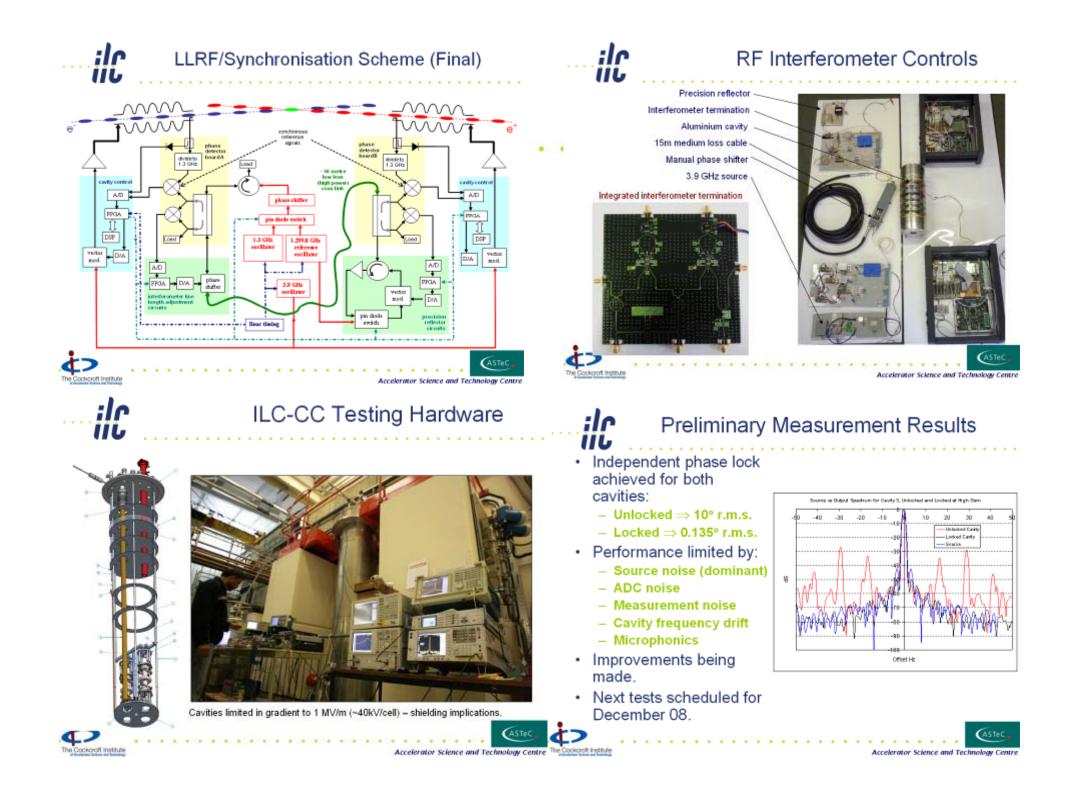
- Modular design allows evaluation of:
 - Up to 13 cells.
 - Including all mode couplers.

Accelerator Science and Technology Centre

ASTeC



Cockcroft Institute


ILC-CC System Verification

- The phase of the field in each cavity is sampled, compared to the timing reference and the error sent to a digital signal processor (DSP) to determine how the input signal must be varied to eliminate the error.
- Provide an RF interferometer between each crab cavity so that the same cavity clock signal is available at both systems.
- · 16-bit DAC/ADC architecture (high resolution)

Accelerator Science and Technology Centre

Creating travelling focus, 2 ways

- Small (~%) uncompensated chromaticity and E-z correlation
 - Need $\sigma_{\rm z}{=}{\bf k}\;{\bf L}^{\star}\;\delta_{\rm E}$
 - where k is relative amount of uncompensated chromaticity
 - and $\delta_{\rm E}$ is 2-3 times > incoherent spread in the bunch
 - E.g. $\delta_{\rm E}$ = 0.3%, k=1.5%, L*_{eff}=6m for 0.3mm bunch
- Transverse deflecting cavity giving z-x correlation in one of FF sextupoles
 - That gives z-correlated focusing

• Can we test one or both these methods at ATF2?

Crab-cavity induced trav.foc at ATF2

- Can existing single cell cavity be dressed in a cryostat and tested at ATF2 to create x-z correlated offset, via sextupoles, to check shift of the focus?
- Estimation of kicks and focus shift:
 - two 9 cell cavities for ILC at 500GeV/beam, for the particle at $z=\sigma_z$ give kick equal to x'= $\theta_c * \sigma_z / (2*R_{12}) \sim 1E-7$ rad
 - Then for 1.3GeV/beam, single cell, for particle at z, the kick = z[mm]* 1e-5 rad
 - For ATF2, if only SDO considered and R_{12} =10m, then shift of focus Δz_{foc} [mm] ~ 0.3*z[mm] -- to be verified

Comments on existing cells

- Peter's comments:
 - Single cell structures we have made, do not have end groups on them
 - no mechanism for mode damping or input coupler
 - for the beam tests we would either have to fabricate end groups and add them to our existing single cell cavities or otherwise build a new structure
 - costs should not be significant to come up with a simple cryostat and cavity tuner design, which could be Dewar fed at 4K
 - we do have a 600W amplifier which could be used for such tests, providing the input Qe is appropriately set
 - all coupler designs are complete and so these would need engineering for fabrication
 - if it's only a single cavity test, then that removes the interferometer synchronizer which also simplifies the LLRF control needed