Proposed replacement of QM7 by TOKIN 3581

Philip Bambade (LAL, KEK)

Guy Le Meur \& François Touze (LAL)
Mika Masuzawa (KEK)
Building on the work by:
M. Alabau, A. Faus-Golfe (IFIC) and many others at SLAC, LAL, KEK and in the UK

Measured TOKIN 3581 X-Y and X-Z $B_{x, y, z}$ field map

Mika Masuzawa and co-workers

1) Fit KnL from measured $B_{x, y}(x, y, z=0)+$ compare with PRIAM 2D (TOKIN \& QM7)
2) Compare measured $B_{y}(x, y=0)=K 0 L$ integrated over Z with PRIAM 2D result
3) \rightarrow under way : check for any coupling from $B_{z}(x \sim 22.5, y>0, z>0)$

TOKIN 3581 measurement

TOKIN 3581
PRIAM simulation
$\mathrm{X}_{\text {extraction }} \cong \mathbf{2 2 . 5 ~ \mathbf { ~ m m }}$

$$
\mathrm{R}_{\text {TOKIN }}=21 \mathrm{~mm}
$$

$$
\mathrm{R}_{\mathrm{QM7}}=16 \mathrm{~mm}
$$

$\begin{aligned} \text { K1L } & =0.99 \times \text { nominal } \\ \text { K2L } & =1 \mathrm{~m}^{-2}\end{aligned}$
$\begin{aligned} \text { K1L } & =0.99 \times \text { nominal } \\ \text { K2L } & =1 \mathrm{~m}^{-2}\end{aligned}$

PRIAM simulation

$\mathrm{K} 1 \mathrm{~L}=0.76 \times$ nominal
$\mathrm{K} 2 \mathrm{~L}=47 \mathrm{~m}^{-2}$

Compare Z-integrated $\mathrm{B}_{\mathrm{y}}(\mathrm{x}, \mathrm{y}=0)$ with PRIAM 2D model to assess TOKIN 3581 finite length effect

Slopes match exactly at origin (within few 10^{-3})

Max. distortion < 3 \%
\rightarrow This sets the level of uncertainty from the finite length effect when using the 2D result to estimate KnL

K1L $\sim 0.392 \mathrm{~m}^{-1}$
$=0.99 \times$ nominal
(present QM7 $=0.76 \times$ nominal)
K2L ~ $1 \mathrm{~m}^{-2}$
(present QM7 = $47 \mathrm{~m}^{-2}$)

Discussion

Measurements and PRIAM 2D compare within a few \%
\rightarrow good enough to predict order-of-magnitude improvement from QM7 \rightarrow TOKIN 3581 change

Present ATF2 EXT non-linearity \rightarrow make 4D beam phase-space (beta-match and $x-y$ coupling) depend on $X \& Y$ injection orbits !

This could in principle be absorbed downstream (re-match, coupling correction, IP optics corrections) or dealt with by ensuring stable injection parameters

But we're lucky: it's possible to avoid this added complexity :
Present QM7 power supply can be re-used TOKIN 3581 was in ATF \rightarrow minor change to support structure Other QM7 can remain untouched (auxiliary supply exists), so no need to break the vacuum in the RF section

Well worth the effort \rightarrow let's do the change end of January

QM7 is shared by DR \& EXT

present radius $=16 \mathrm{~mm} \quad$ extracted beam offset $=22.5 \mathrm{~mm}$

Measurements at OTR behind septum function of vertical bump

\rightarrow Imaae of angles out of QM7

OTR / XSR corrected vertical projected emittances

May 28, 2008

$$
\varepsilon_{y-\text { proj }}^{2}=\varepsilon_{y-\text { in }}{ }^{2}+\varepsilon_{x-\text { in }} \varepsilon_{y-i n} \beta_{x} \beta_{y} K_{2} L^{2} \times\left(\Delta_{y}^{2}+\varepsilon_{y-i n} \beta_{y}\right)
$$

(assumes uncoupled input)

QM7 2D field calculation with PRIAM

$$
X_{e x t}=22.5 \mathrm{~mm}
$$

FIG. 5 - QM7 B field lines

Compares well with POISSON calculation from SLAC

K2L

$\mathrm{K} 2 \mathrm{~L}=46.6 \mathrm{~m}^{-2}$
\rightarrow contributes $\mathrm{x}-\mathrm{y}$ coupling :
K1L
$\mathrm{K} 1 \mathrm{~L}=0.3 \mathrm{~m}^{-1}=0.76 \times$ nominal
\rightarrow large rematch of betatron optics factor $\sim 2-3$ on $\varepsilon_{y-\text { proj }}$ for $\Delta y=1 \mathrm{~mm}$

$$
\varepsilon_{y-\text { proj }}^{2}=\varepsilon_{y-i n}^{2}+\varepsilon_{x-i n} \varepsilon_{y-i n} \beta_{x} \beta_{y} K_{2} L^{2} \times\left(\Delta_{y}^{2}+\varepsilon_{y-i n} \beta_{y}\right)
$$

TOKIN 3581 quads available \rightarrow new PRIAM 2D calc.

$$
\mathrm{X}_{\mathrm{ext}}=22.5 \mathrm{~mm}
$$

\rightarrow K1L and K2L error almost disappears !

KOL

$$
\begin{aligned}
\text { K1L } & \sim 0.392 \mathrm{~m}^{-1} \\
& =0.99 \times \text { nominal }
\end{aligned}
$$ (previously $=0.76 \times$ nominal)

$$
\text { K2L } \quad \sim 1 \mathrm{~m}^{-2}
$$

(previously $=46.6 \mathrm{~m}^{-2}$)

extracted beam offset [m]

	Radius	Turns Max I	Current needed:	
QM7	16 mm	17	139 A	$130^{\star}(42 / 32) 2^{\star} 17 / 26=146 \mathrm{~A}$
Q-3581	21 mm	26	245 A	\rightarrow present PS system sufficient

