The ILD Letter of Intent: Optimisation and Performance

Mark Thomson for the ILD group

This talk:

- Introduction
- ② Optimisation of ILD (GLD/LDC→ILD)
- **9** Performance
- **4** Conclusions

• From GLD/LDC to ILD

History

- ★ Late 2007: ILD formed from previous (Asian-dominated) GLD and (European-dominated) LDC groups
- **★** Jan 2008: first ILD meeting (DESY Zeuthen)
- **★** Sep 2008: ILD baseline parameters chosen
 - not always an easy process required compromises
 - choices based on physics arguments from extensive studies (the first part of this talk)
 - essentially unanimous agreement!
- **★ Mar 2009: ILD Letter of Intent submitted, including**
 - current understanding of ILD performance

the second part of wide range of physics studies this talk

Huge amount of work by many people! Today, only give a brief summary...

For more details see Lol, supporting documents and parallel session talks

ILD Philosophy

International Large Detector

- Based on high granularity particle flow calorimetry
 - confident this will provide necessary jet energy resolution
- "Large" central Time Projection Chamber (TPC)
 - proven technology; provides excellent pattern recognition in a dense track environment
- Tracking augmented by Si strip/pixels
 - extend tracking coverage + improves precision
- A high precision Vertex detector close to IP
 - for best possible heavy flavour tagging
- Close to 4π tracking/calorimetric acceptance

2 ILD Optimisation

- **★** Major effort to optimise/justify ILD parameters
- **★** Starting point: GLD and LDC concepts
- **★** Many similarities:
 - both conceived as detectors for particle flow calorimetry with a TPC as the central tracker
- ★ Also significant differences:
 - overall parameters: size, magnetic field
 - sub-detector technologies

	LDC		GLD	ILD?
Tracker	TPC		TPC	TPC
R _{TPC} =	1.5 m	1	2.0 m	1.5 – 2.0 m
B =	4 T		3 T	3 – 4 T
Vertex	5 single la	yers	3 double layers	?
ECAL	SiW pix	els	Scint strips	?
HCAL	Steel	RPC Scint	Steel-Scint	?

Main ILD sub-detector options

ILD Optimisation: Strategy

★ Scope of Optimisation:

- Concentrate on global detector parameters:
 - radius, B-field, HCAL thickness, ...
- **★** Parameter space:
 - study parameters between/close to GLD and LDC
- **★** Sub-detector technology:
 - At this stage not in a position to choose between different options
 - different levels of sophistication in simulation/reconstruction
 - However, can demonstrate a certain technology/resolution meets the ILC goals
- **★** Cost:
 - Large uncertainties in raw materials/sensors
 - For this reason, do not believe optimising performance for given cost is particularly reliable at this stage
 - Whilst conscious of cost, meeting the required performance/ physics goals is the main design criterion

ILD Optimisation: detector models

★Software:

- Detailed GEANT4 detector models: gaps, dead material, ...
- Sophisticated reconstruction software
- ★ Considered 3 "benchmark" detectors in both LDC and GLD software frameworks:

Jupiter : GLD, GLDPrime, GLD4LDC

Mokka: LDC4GLD, LDCPrime, LDC

"Big"

Medium

"Small"

Sub-Detector	Parameter	GLD	LDC	GLD'	LDC'
TPC	R _{outer} (m)	1.98	1.51	1.74	1.73
Barrel ECAL	R _{inner} (m)	2.10	1.61	1.85	1.82
	Material	Sci/W	Si/W	Sci/W	Si/W
Barrel HCAL	Material	Sci/Fe	Sci/Fe	Sci/Fe	Sci/Fe
Solenoid	B-field	3.0	4.0	3.5	3.5
VTX	Inner Layer (mm)	17.5	14.0	16	15

ILD Optimisation: Particle Flow

- **★ ILD designed for Particle Flow Calorimetry**
- **★ Plays** an important role in the detector optimisation
 - essential to that ILD meets ILC jet energy goals

ILC Jet Energy Goals

- **★** Want to separate W and Z di-jet decays
- **★** For di-jet mass resolution of order

$$\frac{\sigma_m}{m} pprox \frac{\Gamma_Z}{m_Z} pprox \frac{\Gamma_W}{m_W} pprox 0.027$$

~2.75 σ separation between W and Z peaks

$$\sigma_{E_{j}}/E_{j} < 3.8\%$$

★Note: better jet energy resolution enables tighter cuts to be made in event selections where invariant mass cuts are important

PFA Optimisation: Calorimeter Segmentation

★ Starting from LDCPrime vary ECAL Si pixel size and HCAL tile size

★ ECAL Conclusions:

- Ability to resolve photons in current PandoraPFA algorithm strongly dependent on transverse cell size
- Require at least as fine as 10x10 mm² to achieve 3.8 % jet E resolution
- Significant advantages in going to 5x5 mm²
- For 45 GeV jets resolution dominates (confusion relatively small)

***** HCAL Conclusions:

• For current PandoraPFA algorithm and for Scintillator (analogue) HCAL a tile size of 3×3 cm² looks optimal

PFA Optimisation: B vs Radius

★ Starting from LDCPrime (B=4.0 T, r_{ECAL}=1825 mm) vary B and R

★ Empirically find

$$\frac{\sigma_E}{E} = \frac{21}{\sqrt{E/\text{GeV}}} \oplus 0.7 \oplus 0.004E \oplus 2.1 \left(\frac{R}{1825}\right)^{-1.0} \left(\frac{B}{3.5}\right)^{-0.3} \left(\frac{E}{100}\right)^{+0.3} \%$$
Resolution Tracking Leakage Confusion

★ Conclude:

- R is more important than B for PFA performance

(For 45 GeV jets resolution dominates - confusion relatively small)

PFA Optimisation: B vs Radius

★ Comparing LDC, LDCPrime and LDC4GLD jet energy resolutions

Relative to	B/T R/m		B-0.3R-1	Relati	ive σ _E /E ν	/s E _{JET} /G	eV
LDCPrime	D/ I	K/III	PK	45	100	180	250
LDC	4.0	1.6	1.08	1.02	1.04	1.05	1.06
LDCPrime	3.5	1.8	1.00	1.00	1.00	1.00	1.00
LDC4GLD	3.0	2.0	0.95	0.99	0.97	0.96	0.96

★ Conclude:

- Differences between GLD and LDC are small
- Not surprising: original detector parameters chosen such that higher B (partly) compensates for smaller radius
- Of the models considered the larger radius, lower field combination is slightly favoured, but at most 5 % differences.

B and R not only affect particle flow...

ILD Optimisation: Tracking

★ Compare GLD, GLDPrime and GLD4LDC momentum resolution and GLDPrime and LDCPrime impact parameter resolution

- **★** Conclude:
 - All models give the required performance with only ~5-10 % differences
 - For high momentum tracks:
 - LDC is favoured over GLD but only by ~5 % (larger lever arm)
 - The 3 double layer Vertex detector is favoured two high precision points close to the IP rather than one
 - Dependence on point resolution + detector layout/technology likely to be much larger than differences observed here

ILD Optimisation: Background considerations

- **★** Large beam background of low p_T electron/positron pairs
 - Radius of pair background envelope is determined by B
 - Determines the minimum inner radius of the vertex detector
 - Potential to impact flavour tagging performance
- ★ But radius of pair background envelope scales only as √B

- **★ Dependence of inner radius of vertex detector is weaker than** √**B**
 - fixed clearance between background and beam pipe and beam pipe and vertex detector
- **★** Consequently 4 T → 3 T translates to a ~10 % difference in inner radius of vertex detector how does this impact flavour tagging

ILD Optimisation: Flavour Tagging

- **★** Compare flavour tagging performance for GLD and LDC based models
 - Differences of 2.5 mm in inner radius of beam pipe due to B field
- **★** Use "State-of-the-Art" LCFIVertex algorithms
 - ANNs separately tuned for the different detector models
 - NOTE: ~2% stat. uncertainties on results from ANN training/finite stats.

★ Conclude:

- Differences are not large
- Higher B (smaller inner radius) slightly favoured but not conclusive due to statistical uncertainties
- Does not provide a strong argument for higher B field

ILD Optimisation: Physics

- **★** Also compared physics performance for GLD and LDC based models
 - Higgs mass from $e^+e^- \rightarrow ZH \rightarrow e^+e^- X/\mu^+\mu^- X$
 - W/Z reconstruction in SUSY Point 5 chargino/neutralino analysis
 - Tau reconstruction/polarisation
- ★ Only significant difference found for full reconstruction of tau decays, e.g. $\tau^- \to \rho^- v_\tau \to \pi^+ \pi^0 v_\tau$
- **\star** For reconstruction of both photons from $\pi^0 o \gamma \gamma$
 - 5×5 mm² is a significant advantage
 - larger radius also helps

★ But impact on physics sensitivity less pronounced

ILD Optimisation: Summary

What did we learn? (much more detail in Lol)

- **★LDC**, "Prime", GLD give similar performance
 - almost by "construction"
 - all reasonable detector concepts for ILC
- **★**For PFlow, radius is more important than B
- **★**Arguments for high B are not strong
- **★For current PFlow algorithm want segmentation**
 - ECAL ≤ 10×10 mm² (5×5 mm² preferred)
 - HCAL ~3×3 cm² (no obvious advantage in higher granular for analogue HCAL)

Choice of ILD parameters

- \star B = 3.5 T
 - not a big extrapolation from CMS solenoid (larger)
 - only weak arguments for higher field
 - 3.0 T viable, but would like to better understand backgrounds
- \star r_{ECAL} = 1.85 m
 - for B = 3.5 T need ~1.55 m to reach jet E goal
 - then allow for uncertainties in shower simulation
 - larger radius brings performance advantages (~16 % for 1.85 c.f. 1.55)
- **★**Technology
 - no selection at this stage

	B/T	r _{ECAL} /m
LDC	4.0	1.6
Prime	3.5	1.8
GLD	3.0	2.0

B ILD Detector Performance

- ★ Defined detailed GEANT4 model of ILD "software reference" model
- ★ For this software model use sub-detector models for which full reconstruction performance has been established

ECAL: SiW: 5×5 mm²

- Advantages of high segmentation
- PFA with strip clustering not yet demonstrated (needs R&D)
- ditto PFA with MAPS ECAL

HCAL: 3x3 cm² Scint. tiles

- PFA with digital/semi-digital
 HCAL not yet fully demonstrated
- First studies indicate comparable perf.

VTX: 3 double layer layout

- slightly better impact parameter res.
- Interesting to study potential pattern recognition advantages

Si Tracking: SiLC design

coverage down to 6°

Level of detail in GEANT4 model probably as good as most TDRs !

Performance Highlights: Track Finding Efficiency

★ Achieve very high track reconstruction efficiency (full reconstruction)

★ For $e^+e^- \rightarrow t\bar{t} \rightarrow 6 \text{ jets}$

★ For (p>1 GeV) efficiency is greater than 99.5 % for any track leaving 4+ hits in tracking detectors (includes Vos and kinks)

NOTE: beam background not included

- Subject of on-going work
- Studies to date do not indicate any problems with background
- However, studies require improvements to digitisation/reconstruction of time structure of bunch train to make solid statements

Particle Flow Performance

★Benchmarked using:

- $Z \rightarrow u\overline{u}, dd, s\overline{s}$ decays at rest
- |cosθ|<0.7

E _j	$\sigma(\mathbf{E_{jj}})$	$\sigma(\mathbf{E_{jj}})/\sqrt{\mathbf{E_{jj}}}$	$\sigma(\mathbf{E_j})/\mathbf{E_j}$
45 GeV	2.4 GeV	25 %	3.7 %
100 GeV	4.1 GeV	29 %	2.9 %
180 GeV	7.5 GeV	40 %	3.0 %
250 GeV	11.1 GeV	50 %	3.2 %

di-jet

jet

- $\sigma_{\mathsf{E}} = \mathsf{rms}_{90}$
- In terms of statistical power rms₉₀ ×1.1 ≈ Gaussian equiv.
- No strong angular dependence down to cosθ~0.975

- ★ Previously argued the need for σ(E_{iet})/E_{iet} < 3.8 %
- **★ ILD** meets this requirement for jets in energy range 40-400 GeV

Excellent jet energy resolution is a strength of ILD!

ILD Physics Performance

ILD Physics Studies:

- Extensive set of analyses developed for Lol
 - "benchmark" and many other processes
- All use full simulation/reconstruction
- Large scale grid-based MC production ~30M events!
- Based on StdHep files generated at SLAC (thanks to those involved)
- Two experienced reviewers assigned to each analysis to give some level of feedback/quality assurance

A lot of impressive work from many people!

Caveats:

- Different analyses have different levels of sophistication
- Not reached the ultimate performance that can be achieved
 - don't draw too strong conclusions yet
 - except perhaps that ILD is an excellent general purpose detector for the ILC

Due to time constraints can only give "highlights" here... Significantly more can be found in the Lol

$e^+e^- \rightarrow HZ$: Higgs Recoil Mass

- **Model independent determination of Higgs mass from Higgs-strahlung events at \sqrt{s} = 250 GeV**
- **★** Measure four-momentum of Z from its decays to e⁺e⁻/μ⁺μ⁻
- **★** Determine Higgs four momentum from recoil mass assuming $\sqrt{s} = 250$ GeV for underlying e⁺e⁻ collision
- **★** Resolution limited by:
 - momentum resolution
 - beamstralung
 - +bremβtrahlung for electron final state
- **★ Select events using only information from di-lepton system**

(250 fb⁻¹)

Significant Bhabha background

Model independent results:

Pol(e ⁻ ,e ⁺)	Channel	σ(m _H)	Cross-sec	ction (Lol)
90 % ±30%	μμΧ	85 MeV	±0.70 fb	(6.6 %)
-80 %, +30%	eeX	150 MeV	±1.15 fb	(9.8%)

$$\sigma(m_H) = 74 \text{ MeV}$$

★ In Model Dependent analysis (i.e. assuming SM Higgs decays) SM background ~ halved

 $\sigma(m_H) = 67 \text{ MeV}$

Relation to detector performance

- This is a benchmark analysis for momentum resolution performance
- Beamstrahlung and beam energy spread ﷺ 800 also impact recoil mass resolution
- Width of μμX recoil mass peak:
 - 730 MeV for perfect resolution
 - 870 MeV after reconstruction
- For this analysis beam effects dominate!
 - correct in MC ?

Interpretation depends strongly on simulated lumi. spectrum...

$e^+e^- \rightarrow HZ$: Higgs Branching ratios

- **★** Determine BR(H→bb), BR(H→cc), BR(H→gg) from Higgs-strahlung events
- **★** Test of flavour tagging performance
- **★ Cut based selections of three HZ decay topologies**

★ Apply b-tags and c-tags to jets from candidate Higgs decay

e.g. qqqq analysis:

Combine b (or c) tags from the two jets

Plot b-likeness vs. c-likeness

Fit using templates to give exclusive σ

★Combine with $\sigma(e^+e^- \to HZ)$ from model independent analysis (for LoI 5 % uncertainty) to give BRs

Channel	Br(H→bb)	Br(H→cc)	Br(H→gg)
ZH→qqcc		30 ⊕ 5 %	
ZH→vvqq	5.1 ⊕ 5 %	19 ⊕ 5 %	
ZH→llqq	2.7 ⊕ 5 %	28 ⊕ 5 %	29 ⊕ 5 %
Combined	5.5 %	15 %	29%

★ Results broadly consistent with Tesla TDR (taking into account different

lumi. and different \sqrt{s})

Relation to detector performance

 Current sensitivities probably more a measure of sophistication of the analysis rather than ultimate detector performance, i.e. can improve ⇒ multi-variate (e.g. ANN)

- nonetheless, good performance is achieved
- NOTE: in vvqq analysis, Higgs di-jet mass resolution feeds into final sensitivity

Chargino and Neutralino Production at \sqrt{s} = 500 GeV

- **★**Chargino and neutralino production in the SUSY "point 5" scenario provides a benchmark for jet energy resolution
- $\star e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$ and $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow ZZ\tilde{\chi}_1^0 \tilde{\chi}_1^0$ result in final states with four jets and missing energy
- **★** Neutralino process is challenging: cross section ~10% chargino

Analysis:

Only time to describe one of two analyses in LoI: method i)

- Select 4 jet + missing E events
- Three possible jet-pairings

- Kin. fit assuming common di-jet mass for two bosons applied to each jet-pairing
- Jet-pairing giving highest fit prob used
- Fit mass distribution to i) SM, ii) chargino and iii) neutralino components to get cross sections

Chargino and Neutralino Production at \sqrt{s} = 500 GeV

- **★**Chargino and neutralino production in the SUSY "point 5" scenario provides a benchmark for jet energy resolution
- $\begin{array}{ll} \bigstar\,e^+e^- \to \tilde{\chi}_1^+\tilde{\chi}_1^- \to W^+W^-\tilde{\chi}_1^0\tilde{\chi}_1^0 \quad \text{and} \quad e^+e^- \to \tilde{\chi}_2^0\tilde{\chi}_2^0 \to ZZ\tilde{\chi}_1^0\tilde{\chi}_1^0 \\ \text{result in final states with four jets and missing energy} \end{array}$
- **★** Neutralino process is challenging: cross section ~10% chargino

Analysis:

Only time to describe one of two analyses in LoI: method i)

- Select 4 jet + missing E events
- Three possible jet-pairings

- Kin. fit assuming common di-jet mass for two bosons applied to each jet-pairing
- Jet-pairing giving highest fit prob used
- Fit mass distribution to i) SM, ii) chargino and iii) neutralino components to get cross sections

$$\sigma(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to W^+W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0)$$

$$\sigma(e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0 \to ZZ\tilde{\chi}_1^0 \tilde{\chi}_1^0)$$
2.1 %

NOTE: Good jet energy resolution essential to extract neutralino signal from much larger chargino "background"

★ Gaugino masses can be reconstructed from decay kinematics

e.g.
$$\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$$

Here masses of $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ from kinematic edges of **Z** energy dist.

- ***** Excellent ILD jet energy resolution allows a sample of $\tilde{\chi}_2^0 \to Z\tilde{\chi}_1^0$ to be isolated from background
- ★ Neutralino + chargino samples give:

$$m_{ ilde{\chi}_{1}^{\pm}}:\pm 2.4\,{
m GeV} \ m_{ ilde{\chi}_{1}^{0}}:\pm 0.8\,{
m GeV} \ m_{ ilde{\chi}_{2}^{0}}:\pm 0.9\,{
m GeV}$$

(method ii)

NOTE: results correlated as mass differences better determined than mass sums. Do not input results from other measurements

Top production at $\sqrt{s} = 500 \text{ GeV}$

- ***** At \sqrt{s} = 500 GeV top mass determined from direct reconstruction of final state
- ***** Fully-hadronic $t\bar{t} \to (bq\bar{q})(\bar{b}q\bar{q})$ and semi-leptonic $t\bar{t} \to (bq\bar{q})(\bar{b}\ell\nu)$
- **★** Main analysis issue is that of jet combinatorics

★Final mass distribution from kinematic fit using selected jet association

Stau production at $\sqrt{s} = 500 \text{ GeV}$

- ***** For SUSY SPS1a' parameters $e^+e^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \tau^+ \tau^-$ gives a relatively low visible energy final state (E_{τ} ~ 40 GeV)
- **★**Analysis requires:
 - precise tracking of low momentum particles
 - good particle identification
 - hermeticity
- ★ Main analysis issue is very large two photon background
- ★ Reduced to acceptable level by vetoing forward electron/positron in Beam Calorimeter
- ***** Fit to endpoint of spectrum (mainly $au o \pi
 u$ decays)

$$\implies m_{\tilde{\tau}_1} : \pm 100 \,\mathrm{MeV} \oplus 1.3 \,\sigma_{m_{\mathrm{LSP}}}$$

★ Post Lol: included beam background, precision essentially same

and finally...WW-scattering at √s = 1 TeV

★Study $W^+W^- \to W^+W^-$ and $W^+W^- \to ZZ$ in $e^+e^- \to \nu \overline{\nu} W^+W^-$

and $e^+e^- \rightarrow \nu \overline{\nu} ZZ$

★jets + missing energy

- ★ "Classic" benchmark for jet energy resolution
- ★ At 1 TeV clear separation is obtained between W and Z peaks with ILD

★Limits on anomalous couplings similar to earlier fast simulation studies

Physics Summary

- Only had time to give a flavour of physics studies in ILD Lol
- Whilst the results do not represent the ultimate precision achievable, they:

Demonstrate the high level of performance of ILD

Demonstrate that ILD is an excellent general purpose detector concept for the ILC

Analysis	\sqrt{s}	Observable	Precision	Comments
		$\sigma(e^+e^- \to ZH)$	0.5 fb (5.1 %)	Model Independent
Higgs recoil mass	$250\mathrm{GeV}$	$m_{ m H}$	$74\mathrm{MeV}$	Model Independent
		$m_{ m H}$	$67\mathrm{MeV}$	Model Dependent
		$Br(H \to b\overline{b})$	$2 \oplus 5 \%$	includes 5 %
Higgs Decay	$250\mathrm{GeV}$	$Br(H \to c\overline{c})$	$14 \oplus 5\%$	from
		$Br({\cal H} \to gg)$	$29 \oplus 5\%$	$\sigma(\mathrm{e^+e^-} \to \mathrm{ZH})$
		$\sigma(\mathrm{e^+e^-} \to \tau^+\tau^-)$	0.3 %	$\theta_{\tau^+\tau^-} > 178^{\circ}$
$\tau^+\tau^-$	$500\mathrm{GeV}$	A_{FB}	± 0.003	$\theta_{\tau^+\tau^-} > 178^{\circ}$
		P_{τ}	± 0.015	$ au o \pi \nu$ only
		$\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+\tilde{\chi}_1^-)$	0.6 %	
		$\sigma(e^+e^- \to \tilde{\chi}_2^0\tilde{\chi}_2^0)$	2.1%	
Gaugino Production	$500\mathrm{GeV}$	$m(\tilde{\chi}_1^{\pm})$	$2.4\mathrm{GeV}$	from kin. edges
		$m(\tilde{\chi}_2^0)$	$0.9\mathrm{GeV}$	from kin. edges
		$m(\tilde{\chi}_1^0)$	$0.8\mathrm{GeV}$	from kin. edges
		$\sigma(e^+e^- \to t\bar{t})$	0.4 %	$(bq\overline{q})$ $(\overline{b}q\overline{q})$ only
$e^+e^- \rightarrow t\bar{t}$	500 GeV	m_t	$40\mathrm{MeV}$	fully-hadronic only
e e → tt	500 Ge v	m_t	$30\mathrm{MeV}$	+ semi-leptonic
		Γ_t	$27\mathrm{MeV}$	fully-hadronic only
		Γ_t	$22\mathrm{MeV}$	+ semi-leptonic
Smuons in SPS1a'	$500\mathrm{GeV}$	$\sigma(e^+e^- \to \tilde{\mu}_L^+\tilde{\mu}_L^-)$	2.5%	measurements
Siliuolis ili SF51a	500 Ge V	$m(ilde{\mu}_L)$	$0.5\mathrm{GeV}$	
Staus in SPS1a'	$500\mathrm{GeV}$	$m(ilde{ au}_1)$	$0.1{\rm GeV} \oplus 1.3\sigma_{\rm LSP}$	
WW Saattoring	1 TeV	α_4	$-1.4 < \alpha_4 < 1.1$	
WW Scattering	Tiev	α_5	$-0.9 < \alpha_5 < +0.8$	

- + photon final states (GMSB/WIMPS)
- + Littlest Higgs
- + beam polarisation from WW

4 Conclusions

- **★ ILD** is a powerful general purpose detector concept for the ILC based on particle flow calorimetry
- ★ The ILD parameters were chosen on the basis of an extensive series of optimisation studies
 - now have a much better understanding of the performance issues
- **★ ILD** meets the performance goals for a detector at the ILC
 - highly performant tracking
 - excellent flavour tagging capability
 - unprecedented jet energy resolution
- **★ ILD** physics studies have started in earnest, and the results presented in the Lol hopefully demonstrate the general purpose nature of the concept

Thank you for your attention

over to Sugimoto-san...

Backup Slides/Plots

ILD Optimisation: Software

- **★** Significant effort to make simulation as realistic as possible
 - Include: realistic geometry, gaps, dead material, support structures
 - Not perfect, but probably a decent first order estimate
 - e.g. Vertex detectors in Mokka

VTX-SL: 5 single layers

VTX-DL: 3 double layers

★ NOTE: for the tracking detector point resolutions are applied in reconstruction (digitisation stage)

All studies use sophisticated full reconstruction chain

PFA Optimisation: HCAL Depth

- ★ HCAL chosen to be sufficiently deep that leakage does not significantly degrade PFA
- ★ Studies include attempt to use muon chambers as a hadron shower "tail-catcher"
- **★** Somewhat limited by thick solenoid
- **★ Vary number of layers in LDCPrime HCAL**

HCAL	$\lambda_{\mathbf{r}}$		
Layers	HCAL	+ECAL	
32	4.0	4.8	
38	4.7	5.5	
43	5.4	6.2	
48	6.0	6.8	
63	7.9	8.7	

- ★ Suggests that ILD HCAL should be 43 48 layers (5.4-6.0 λ₁)
- **★** 48 layers chosen for ILD

Backup slides: tracking coverage and material

Bacjup: ILD Flavour Tagging Efficiency

Backup: Flavour tagging: higher energies

★ANNs were not tuned for 250 GeV jets

Flavour composition	91.2 GeV	500 GeV
bb	22%	15%
СС	17%	25%
uu, dd, ss	61%	60%

Backup: ILD Tau Pairs

