GEM TPC Large Prototype Beam tests

A. Sugiyama Asia LC-TPC group

on behalf of LC-TPC collaboration

Introduction

Tracker has to have "good" momentum resolution for good M_{recoil} resolution

"good" recon. efficiency

for PFA/F-tag

even for low P track

Low X₀

Tracker has to achieve the performance even under high bkg. condition

from beam-beam

TPC w/ high B field

GEM with narrow pad

w proper gas choice

In order to make sure TPC can achieve this goal

Small prototype test has been continued to

understand how the resolution behave

how gas choice affect to the performance

What we had achieved at small prototype (MP-TPC)

Pad Response

Drift distance [mm]

IT

Resolution

 $E=200[V/cm],T2K gas V_{GEM}=250[V]$

What we did learn from the small prototype test position resolution

the relation between pad pitch and charge spread(p.r.f.)

pad pitch < 3 x diffusion@MPGD

Gas property under B field is explained by MagBoltz

1mm pitch pad with GEM

2 GEM for gas amplification 1 thin GEM for ion gate

Large Prototype test (based on EUDET facility)

Concept

Modules(GEM, MM, +TimePix)

Asia, Saclay/Canada, NIKHEF, Bonn, ,,,,

Field cage

End Plate

Magnet

calibration

GEM module

conceptual design

minimize insensitive area pointing IP between modules (limited frame)

Bunch of tiny connectors (40 pins) 161 connectors

28 pad raws (176/192 pads/raw) ~1.2(w) × 5.4(h) mm² staggered every each layer

all other space for HV supply

Total 5,152 ch/module

+ Back Frame

Gate GEM (14um thick) will be on top of the module

RCU Power distribution ReadOut Electronics ALICE/ALTRO electronics +DAQ LUND/CERN power consumption < 40 mW / channel Front End Card (128 CHANNELS) L1: 6.5µs 200 Hz 1 KHz Custom 8 CHIPS (16 CH / CHIP) 8 CHIPS (16 CH / CHIP) Backplane **ALTRO** Digital PASA ADC RAM Circuit RCU CUSTOM IC 570132 PADS CUSTOM IC (CMOS 0.25µm) (CMOS 0.35µm) (3200 CH / RCU) plane CSA BASELINE 1 MIP = 4.8 fC SEMI-GAUSS, SHAPER **10 BIT** MULTI-EVENT CORR. S/N = 30:1MEMORY 10 MHz GAIN = 12 mV / fC TAIL CANCELL. DYNAMIC = 30 MIP Luciano Musa FWHM = 190 ns

3,200 channels are available now

summer 2009 10,000 channels ready

BeamTest

Feb.1st ~ Mar.6, 2009 Mar. 23 ~ Apr. 8, 2009

GEM module without GATE

4 modules made

3 modules are installed to LP1/EP

shift @ Apr.1st,2009

RO electronics are equipped to 2/3 connectors/raw on 84 raws

lever arm ~50 cm

5 GeV/c beam $T2K \text{ gas} (Ar:CF_4:isoC_4H_{10}/95:3:2)$ $E_{drift} \sim 230V/cm$

establish (good) local resolution at LP1 extend this performance to all over the whole module inter module correction/alignment

----> momentum resolution/efficiency,,,,,,
realistic performance

At the beginning of 2nd period of beamtest we could see hits over 3 modules

We have to give up module 6 after problem of drawing current

Data taken at 2nd. 2 modules alive

Analysis tools

Marlin-TPC

going to be implemented soon

own analysis program (Kalman filter) is used for this

All plots shown today is preliminary

Charge spread (pad response function)

$$\sigma^2 = \sigma_0^2 + C_D^2 z$$

Diffusion constant

from Data

	B = 0 T	B = 1 T
C _D [um/√cm]	303	102
error	1	1

Comparison to MagBoltz and result of Small Prototype Points means MP-TPC results.

Constant term σ_0

coming from

diffusion in gas amplification

370 um 480um for 0 T 310 um 410um for 1 T

hodescope effect in pad \sim pad width /J12 = 350 um

+ convolution with gain fluctuation

angular-pad effect 0

470 um @1T

@1cm drift

Pad response on each pad raw

$$\sigma^2 = \sigma_0^2 + C_D^2 z/N_{eff}$$

B=0T

$$\frac{C_D}{\sqrt{N_{eff}}} = 65 \pm 2[\mu m/\sqrt{cm}]$$

B=IT

$$\frac{C_D}{\sqrt{N_{eff}}} = 22.6 \pm 0.7 [\mu m/\sqrt{cm}]$$

N_{eff} obtained from resolution plot shows quality of data

 N_{eff} is 20 ~ 22 in this exp.

but it needs correction when we compare that in small proto. results

	LP1	small proto.	correction
Pad height	5.4 mm	6.3 mm	0.93
dE/dx	1.5	1.2	

Neff 19 ~ 21

(20~24 in small prototype)

a little bit fewer ??

Though this is very preliminary result but it looks almost consistent with that of small prototype

Now we are at the starting point of LP1 study

systematic study of resolution

z resolution
position dependence
PH dependence
drift distance dependence
angle dependence

uniformity of gain cross talk

momentum resolution
2-track separation
tracking under non-uniform field

multi-module combined analysis

effect of module boundary

momentum resolution by multi-module

Summary

The first beam test under LP1 has done

Preliminary results seems to be quite consistent with that obtained w/small prototype

More will come (soon)

after software development and further analysis

Complete test with GATE is scheduled in winter