4th Tracker Performance **TILC09 - April 18, 2009 - Tsukuba**

F. Grancagnolo - 4th Tracker performance April 18, 2009 - Tsukuba TILC09 - Joint ACFA Physics and Detector Workshop and GDE Meeting on International Linear Collider April 17 - 21, 2009, Tsukuba, Japan

Vertex Detector

Vertex Detector:

multi Giga-pixel chamber with cylinders and disks according to SiD thin pixel design scaled up for $B = 5T \rightarrow 3.5T$.

4th Concept is not currently working on a pixel chamber design.

VXD + Be beam pipe \rightarrow 1.2% X₀

CluCou

•all stereo, cluster timing drift chamber
•light He based gas mixture
•mechanical structure entirely C-fibre
•max drift time contained in one BX
•total tracking volume (inner wall, gas and wires) < 0.5% X₀
•endplates (2.9% X₀), services (~5% X₀)

 $\frac{\Delta p_{\perp}}{p_{\perp}} = \frac{\sqrt{320} \cdot \sigma_{xy}}{0.3 \cdot B \cdot \ell^2 \cdot \sqrt{n}} \cdot p_{\perp} ~\oplus~ \frac{5.4 \times 10^{-2}}{B \cdot \ell} \sqrt{\frac{\ell}{X_0}}$

(transverse length ℓ , σ_{xy} and X_0 in [m], B field in [T], momentum in [GeV/c]).

Required performance at ILC: $3.\times 10^{-5} \oplus 1.\times 10^{-3}$

F. Grancagnolo - 4th Tracker performance April 18, 2009 - Tsukuba

ituto Nazionale Fisica Nucleare

For a given $B\ell^2$, the requirements are met with

50 μm resolution and ~150 measurements in a 1.5 m radius (drift chamber) or, with

10 μ m resolution and a few (5) measurement planes (silicon tracker).

Drift chamber over silicon tracker advantages

Lower **multiple scattering** contribution for momenta up to several tens of GeV/c $(0.5\% X_0 \text{ vs } 5\% X_0)$.

Redundancy: insensitivity to local inefficiencies and to spurious hits, due to background or to shared occupancy in dense regions.

Alignment and its temporal **stability** (e.g., before and after a push-pull operation) with the rest of the detectors and with the interaction point in a time short enough to control systematics.

Continuous seeding in the active volume for track finding, not relying on the vertex detector or the calorimeter, thus capable of detecting and fitting **kinks and neutral vertices** with high efficiency (hard to accomplish in a few planes silicon tracker).

Drift chamber over TPC advantages

Lower multiple scattering contribution for momenta up to several tens of GeV/c $(0.5\% X_0 \text{ vs } 4\% X_0)$ in barrel region and $(8\% X_0 \text{ vs } 15\% X_0)$ in the endplates, without inner and/or outer blankets

Single event per bunch crossing as opposed to the integration of at least 150 BX's: pattern recognition more difficult and particularly severe because of the large integration of backgrounds.

Particle identification using dN/dx, in principle, down to 2.5%, as opposed to dE/dx at 5-6% at best.

High concern about the problem of the **positive ion feedback in a TPC** causing trajectory distortions (affecting resolution) and drifting electrons recombination (affecting efficiency).

April 18, 2009 - Tsukuba

tituto Nazionale Fisica Nucleare

General layout based on successful operation of KLOE drift chamber

 $\begin{aligned} R_{in} &= 19 \text{ cm} \\ R_{out} &= 150 \text{ cm} \\ R_{dome} &= 242 \text{ cm} \end{aligned}$

Cell size from 0.4 cm to 0.7 cm side 160 axial measurements (on average) Stereo angles from 55 mrad to 220 mrad # sense wires = 66000 (5X KLOE) # field wires = 150000 (4X KLOE)

Design, structural stability, types of carbon fiber and other component materials are given in a mechanical engineering thesis, together with a strategy for the wiring procedure, taking into account the deformation of the structure while the wires are tensioned.

The implementation of the cluster timing technique requires a **low cost**, **high-speed**, **low-power** electronic interface able to process the drift signals. We have designed a CMOS 0.13µm integrated readout circuit, including a **fast preamplifier** (with a -3dB bandwidth of 700 MHz) and 1 GSa/s-6bit ADC to fulfill all the requirements for cluster timing. (2nd version by June 2009)

Muon Spectrometer

The basic building block is a **4.6 cm drift tube** using the **same He gas mixture** and the **same front end electronics** as **CluCou**.

 Precision positioning plates are used to align the tubes.

Only two different muduli, 4 m long, 460 and 1100 tubes each, are necessary to build 1/6 of 1/3 of the whole barrel.

The three corresponding tubes along *z* are ganged together for a more precise *z*-coordinate measurement with current division.

20 layers of tubes radially.

Muon Spectrometer

Each end cap plane is made of three basic moduli. One end cap is made of three planes rotated by 120°.

6 tubes per projection, 18 per end cap.

Total number of tubes: 45000. Total number of electronics channels: 34000.

VXD Single Cluster Residual (single track)

- FNAL/SLAC layout more than adequate for current requirements at ILC
- Main issue is choice of technology
- Choice driven by Montecarlo studies on beam background

Tracking Efficiency

No beam bkg Tracking resolution vs P

Ăpril 18, 2009 - Tsukuba

NFN

Istituto Nazionale di Fisica Nucleare

:Ir

No beam bkg Tracking resolution vs θ

ttbar -> 6 jets 100 BX beam bkg

120 MeV

Occupancy with Beam Background

٠

ttbar->6jets

- Joint ACFA Physics and Detector Workshop and GDE Meeting on International Linear Collider April 17 - 21, 2009, Tsukuba, Japan

The second se

Fake track definition 1 misassigned cluster in VTX 10% misassigned clusters in DCH

Sources of inefficiencies

seeding for low Pt & Kalman filter with fake

Good vs fake tracks

fake

սահոննուններ

30

35

pt (GeV/c)

25

40

Muon Spectrometer Performance

$$\sigma(P_t^{-1}) = 0.04 / P \oplus 1.5 \times 10^{-3} GeV^{-1}c$$

Cracks excluded Requires tracks already reconstructed in DCH

Alternative technological Options

Drift chamber efficiency vs theta

9 9 9 10 March

Momentum resolution vs theta

