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Reconstructed electron tracks, with proper treatment of the energy loss by bremsstrahlung, can be described

by a mixture of Gaussian state vectors. These are the virtual measurements of a subsequent vertex reconstruction,
which has to be performed by a Gaussian sum filter (GSF).

Algorithms which have been developed for the CMS experiment exist, and are to be implemented in our

detector-independent vertex reconstruction toolkit RAVE. They represent an extension of the Kalman filter and
smoother, and can be combined with the robust adaptive vertex filter.

An inherent problem of the GSF is the exponential growth of its number of Gaussian components. This can be

limited by collapsing ”similar” pairs, as defined by an appropriate ”distance measurement”.

Results presented are based on CMS simulations.
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Reminder: vertex fit by a Kalman filter

Virtual measurements (Gaussian errors):
• Reconstructed tracks: pk, Vk [k = 1 . . . n]

– pk = 5-vectors of fitted track parameters,

– Vk ≡ cov(pk) = symmetric 5 × 5 matrices.

• Beam interaction profile (optional): v, Vo

– v = 3-vector of centre of the beam int. profile,

– Vo ≡ cov(v) = symm. or diag. 3 × 3 matrix.

Fit results described by Gaussian errors:
• Reconstructed vertex position: x, C

– x = 3-vector of fitted space coordinates,
– C ≡ cov(x) = symmetric 3 × 3 matrix.

• Re-fitted tracks at vertex: qk, Dk [k = 1 . . . n]

– qk = 3-vectors of smoothed track parameters,

– Dk ≡ cov(qk) = symmetric 3 × 3 matrices.
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• The full information (e.g. needed by a subsequent kinematics fit) includes also these covariances:

– ET
k ≡ cov(qk, x) [k = 1 . . . n] n asymmetric 3 × 3 matrices,

– cov(qk, qℓ) [k, ℓ = 1 . . . n with k 6= ℓ] n · (n − 1) asymmetric 3 × 3 matrices.

In case of non-Gaussian errors, the Vk do not fully describe the measurements. The KF is still the optimal linear
estimator, and its results are equivalent to Gaussian w.r.t. “mean squared quantities” (Gauss-Markov theorem).
Improvement can only be achieved by a non-linear estimator, like the GSF.

Reference: R. Frühwirth, P. Kubinec, W. Mitaroff, M. Regler : Computer Physics Comm. 96 (1996) 189.
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Tracks described by a Gaussian mixture

• Energy loss of electrons and positrons is dominated by bremsstrahlung. It is a
stochastic process which can be modeled by the Bethe-Heitler formula.

• A track pk reconstructed with proper treatment of bremsstrahlung is described
by a mixture of Mk Gaussian measurement vectors pi

k: its p.d.f. is

℘(pk) =
Mk
∑

i=1

γi
k · Γ(pk;p

i
k,V

i
k),

Mk
∑

i=1

γi
k = 1

with Γ(pk; . . .) being a multivariate Gaussian p.d.f. of mean pi
k and covariance

matrix cov(pi
k,p

i
k) ≡ Vi

k. In general the means need not to be equal.

• Each component i = 1 . . . Mk of the mixture corresponds to one hypothesis
on the virtual measurement, with the weight γi

k being its probability.

• In practice, a number of components Mk ≤ 6 is sufficient.

References: R. Frühwirth: Computer Physics Comm. 154 (2003) 131.

W. Adam, R. Frühwirth, A. Strandlie, T. Todorov : CMS note 2005/001, CERN.
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Vertex fit by a Gaussian sum filter (1)

• The measurement equation maps the state vector to the measurement
vector. It is linearized by a 1st order approximation at some “expansion point”
ek = (xe,q

e
k), and homogenized by transforming away the constant term:

pi
k = hk(x,qk) + ǫi

k, cov(ǫi
k) ≡ Vi

k = (Gi
k)

−1

hk(x,qk) ≈ Akx + Bkqk, Ak ≡ [∂hk/∂x]ek
, Bk ≡ [∂hk/∂qk]ek

• P.d.f. of measurement hypothesis pi
k, conditional on a state vector (x,qk):

℘(pi
k | x,qk) = Γ(pi

k;hk(x,qk),V
i
k)

• The estimated state vector xk−1 of the vertex position, based on (k−1) tracks
{p1, . . .pk−1}, is assumed as mixture of Nk−1 Gaussian x

j
k−1, with p.d.f.

℘(xk−1) =
Nk−1
∑

j=1

πj
k−1 · Γ(xk−1;x

j
k−1,C

j
k−1),

Nk−1
∑

j=1

πj
k−1 = 1

• Dummy state vector of momentum at xk−1: ℘(qo
k) = Γ(qo

k;q
e
k,D

o
k → ∞)
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Vertex fit by a Gaussian sum filter (2)

• First, in a partial GSF step, hypothesis i of the next track = pi
k is added,

yielding an updated estimate of the full state vector = (xi
k,q

i
k).

• With ℘(xk−1) and ℘(qo
k) as prior p.d.f.s, the posterior p.d.f. of this new state

vector, conditional on the observation pi
k, follows from Bayes’ theorem as

℘(xi
k,q

i
k | pi

k) ∝ ℘(pi
k | xi

k,q
i
k) · ℘(xk−1) · ℘(qo

k), resulting in

℘(xi
k,q

i
k | pi

k) =
Nk−1
∑

j=1

ωij
k · Γ

(

(xi
k,q

i
k); (x

ij
k ,qij

k ),Xij
k

)

,
Nk−1
∑

j=1

ωij
k = 1

with means (xij
k ,qij

k ) and 6×6 covariance matrix X
ij
k obtained from a Kalman

filter for component j being updated by component i. Posterior weights ωij
k

correspond to prior weights πj
k−1, conditional on the measurement hypothesis

pi
k. Explicit formulae are given on the next slide.

• The complete GSF step is a weighted sum over all hypotheses:

℘(xk,qk | pk) =
Mk
∑

i=1

Nk−1
∑

j=1

γi
k ωij

k · Γ
(

(xk,qk); (x
ij
k ,qij

k ),Xij
k

)
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Formulae for one Kalman filter step
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= C
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Calculation of the posterior weights (prior quantities have a bar):

r̄
ij
k

= p
i
k −

“

Ak x
j
k−1

+ Bk q
e
k

”

, R̄
ij
k

≡ cov(r̄
ij
k

) = V
i
k + Ak C

j
k−1

A
T
k + Bk D

0
k B

T
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ωij
k

∝ πj
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·
˛

˛
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˛

˛
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· e
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/2
⇐ Σ

Nk−1
j=1 ωij

k
= 1, (χ̄2)ij

k
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ijT
k

(R̄ij
k
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k

Note: choose D0
k big enough to avoid a bias on ω

ij
k

, but not too big in order to avoid it becoming singular.
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Vertex fit by a Gaussian sum filter (3)

• For the next GSF step (adding track pk+1), the marginal p.d.f of the posterior
℘(xk,qk | pk) will become the prior p.d.f. of the vertex position xk:

with (ij) → j′, πj′

k = γi
k ωij

k , Nk = Mk · Nk−1

℘(xk) =
Nk
∑

j′=1

πj′

k · Γ(xk;x
j′

k ,Cj′

k ),
Nk
∑

j′=1

πj′

k = 1

• This p.d.f. is a mixture of Nk Gaussian components. Their number increases
exponentially with the number of tracks added. A way to keep it limited is to
identify a “similar” pair of components, and to collapse it into one:

π1
k · Γ(xk;x

1
k,C

1
k) + π2

k · Γ(xk;x
2
k,C

2
k) =: (π1

k + π2
k) · Γ(xk;x

c
k,C

c
k)

xc
k = p1 · x1

k + p2 · x2
k, where p1 ≡ π1

k/(π
1
k + π2

k), p2 ≡ π2
k/(π

1
k + π2

k)

Cc
k = p1 · (C1

k + x1
kx

1T
k ) + p2 · (C2

k + x2
kx

2T
k ) − xc

kx
cT
k

• The similarity between two Gaussian p.d.f.s may be measured by the Kullback-
Leibler or by the Mahalanobis distance (see the reference).
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Is there a Gaussian sum smoother ?

• After iteration over all tracks ℓ = 1 . . . n, the vertex position’s final estimate
℘(xn) contains the complete information from all tracks.

The estimate of each track k at the vertex (marginal p.d.f. of the posterior)
℘(qk) contains information from tracks ℓ = 1 . . . k only.

• A straight-forward GSF smoother would update each component i = 1 . . . Mk

of track k with those Nn/Mk components j∗ of the final vertex to which it
had contributed, using the Kalman formulae with (xij∗

n ,Cij∗

n ). However, the
k.i to j relationship has been destroyed by the collapses.

• Because only the last track fitted by the GSF does contain the full information,
a “forward & backward GSF” can perform the smoothing:

– GSF in ascending (ℓ = 1 . . . k − 1) and descending (ℓ′ = n . . . k + 1) order;
– Calculate the weighted mean ℘mean(xk/∈) of ℘asc(xk−1) and ℘desc(xk+1);
– Last GSF step of adding pk to prior ℘mean(xk/∈) yields posterior ℘(xn,q∗

k).

• This smoothed estimate ℘(q∗
k) contains the information from all tracks.
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Simulated performance of the GSF

Simulated 2-component Gaussian mixture: 90 % “narrow” (σIP = 100µm) and 10 % “wide” (σIP = 1000µm).
4-track vertex fits by the Kalman filter (Fig. 1), and by the GSF without collapsing (Fig. 2).

Fig. 1. Residual (left) and pull (middle) of the x-coordinate of the reconstructed vertex and χ
2 probability (right) of the vertex fit using the Kalman filter.

Note that 32% of the

Kalman vertex fits have

χ2 probability < 1%,
albeit all tracks entered

are “good” ones.

Fig. 2. Residual (left) and pull (middle) of the x-coordinate of the reconstructed vertex and χ
2 probability (right) of the vertex fit using the GSF, without limiting

the number of components.

The dip at 0 of the

pseudo χ2 probability
is due to the tails of

the “narrow” component
being well within the

range of the “wide”
core, and thus are mis-

interpreted as belonging
to the latter.
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Conclusions and outlook

• The Gaussian sum filter (GSF) has been implemented and tested in the CMSSW
framework of the CMS experiment at LHC, both for the reconstruction of
electron and positron tracks, and for the reconstruction of vertices involving
tracks described by a Gaussian mixture.

• It has been shown elsewhere that vertex reconstruction by the GSF can
successfully be combined with the adaptive vertex fitter (AVF), thus further
improving its robustness w.r.t. outlier tracks.

• We plan to implement the GSF in the Vienna fast simulation tool “LiC Detector
Toy” (LDT) for the reconstruction of electron and positron tracks, simulated
with energy loss by bremsstrahlung.

• We plan to implement the GSF in the Vienna vertex reconstruction toolkit
RAVE, and to combine it with the existing AVF.

• Caveat: realisation is subject to the manpower available.

Reference: T. Speer, R. Frühwirth: Computer Physics Comm. 174 (2006) 935.
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