Status of Nb sample study

TILC09

Main Linac S0 session 18 April 2009

T. Saeki

on behalf of SRF surface analysis group at KEK

EP facilities at STF/KEK

EP acid reservoir tank

Powder on cathode bag at STF/KEK

Commissioning run of STF EP facility 30 June – 1 July 2008

Location: Iris Cell#4-cell#5, Iris cell#5-cell#6

Analysis of powder on the cathode bag

X-ray diffraction analysis

The results shows that sulfur is in a crystallized form

Collection of sulfur powder on cathode bag

Location:

Iris Cell#4-cell#5, Iris cell#5-cell#6

We added detachable piece of Teflon mesh-sheet over the cathode bag. The sheet collected sulfur powder in the EP acid during the real EP processes of 9-cell cavities at

STF/KEK.

Observation of Teflon-mesh by SEM

EDS analysis of Teflon-mesh

EDS analysis of Teflon-mesh

Tests of rinsing effect for sulfur

• Degreaser (LION SUNWASH FM-550, FM-20)

concentration = 0%, 2%, 5%, 10%, 20% 50ml, T=50°C, 1 hour, Ultrasonic rinse

Ethanol

10ml, Room temp., 10min., Mechanical vibration (at a few Hz) 50 ml, Room temp., 1 hour, Ultrasonic rinse

H₂O₂
50 ml, 10% H₂O₂, T=50 °C, 1 hour, Ultrasonic rinse

Rinse Effect to Remove Sulfur precipitation/contamination

Results of rinse effect tests

Test of FM-20 (LION detergent) and 10% H₂O₂

	Detergent FM-20 2 %	Detergent FM-20 5 %	Detergent FM-20 10 %	10% H ₂ O ₂
Cleaning Result	0	0	0	×or△

Test of Ethanol and FM-550 (LION detergent)

	U.P.W.	Ethanol	Ethanol	Detergent	Detergent	Detergent	Detergent
	ultrasonic	vibration	ultrasonic	FM-550	FM-550	FM-550	FM-550
	rinse	rinse	rinse	2 %	5 %	10 %	20 %
Cleanin g Result	Y	Δ	0	Δ	Δ	0	0

Special single-cell cavity for sample-study

2 samples at equator

2 samples at iris

2 samples on a beam-pipe

November 2008

6 Nb samples were dressed on the special cavity

EP 20 um + UPW rinse (No ultrasonic-rinse)

One of EP'ed sample was analyzed by SIMS.

Secondary Ion-Microprobe Spectroscopy (SIMS)

We ordered the surface analysis of EP'ed Nb sample by SIMS at a company.

Specification of Secondary Ion-Microprobe Spectroscopy (SIMS)

Date of measurement: 2009 Feb. 27

Sample: Nb plate

Object: Check if there is S on the surface of the Nb plate by using TOF-SIMS.

Tool: TOF-SIMS (PHI TRIFT IV)

Condition:

Ion = Bi_3^{++} (Bismuth ion, n=83)

Voltage = 30 kV

Ion current = 7 nA (DC)

Measurement area: 600 um x 600 um

Mass range: 0 – 1850 amu

Beam structure: bunch

Secondary ion : minus and plus ions

Measurement time: 10 minutes x 1 time, 30 minutes x 2 times

Spectrum of Secondary Ion-Microprobe Spectroscopy (SIMS)

There are S signals in the spectrum which is the mean or integral of 600 umsquare area. However, it is very difficult to say how much S is there, because generally the sensitivity coefficient of a component strongly depends on the neighboring components in SIMS analysis. Sometimes, it changes in the order of 10**2 – 10**3 depending on neighboring components.

Very preliminary

Image of Secondary Ion-Microprobe Spectroscopy (SIMS)

Distribution of specific component is seen in an image of 600 um-square area by 256 x 256 pixels with the pixel size of ~2.3 um.

There are spots of sulfur in the size of 10 - 20 um.

Summary

- In the commissioning run of STF EP facility, we found white powder on the cathode bad.
- The components of white powder is found to be mainly sulfur by X-Ray Fluorescence analysis.
- X-ray diffraction analysis showed that the sulfur powder is in crystallized form.
- We put detachable Teflon-mesh on the cathode bag in the real EP processes of 9-cell cavities to collect sulfur powder.
- Sulfur powder on the Teflon-mesh was observed by SEM and EDX.
- We tried to remove sulfur on the Teflon-mesh by various rinsing methods; detergent, ethanol and H_2O_2 .
- We found that ethanol rinse with ultrasonic and detergent (FM-550 and FM-20) rinse with ultrasonic are effective to remove sulfur.
- We fabricated special single-cell cavity with holes in which we can set detachable Nb samples. The special single-cell cavity was EP'ed in the STF EP facility.
- One of the EP'ed detachable Nb sample was analyzed by TOF-SIMS.
- We can say if there is some component there by TOF-SIMS, but quantitative analysis is very difficult.
- We found sulfur on the detachable Nb sample in the measurement area of 600-um square by an imaging with 256 x 256 pixels.