Recent development of Semi-Digital HCAL using GRPC

Kieffer Robert
IPNLyon
CALICE Collaboration
TILC09 April 17-21
kieffer@ipnl.in2p3.fr

Overview

The Semi-Digital HCAL concept Detector and readout development

- Small GRPC & Readout
- Current R&D for 1m² GRPC

Test Beam Results with small GRPCs

- Detector performances
- Hadronic showers

Current development

- 1m² detector fully equipped
- 1m³ project

Simulation and Integration activities

- Hadronic showers containment
- First resolution studies with PFA

Conclusion & outlook

The Semi-Digital HCAL concept

A digital HCAL with a very high granularity (1cm² cells), is one of the two options proposed for ILD.

Choice of Glass Resistive Plate Chamber (GRPC):

- Efficient, homogeneous, low cost.
- The detector plans are being developed with embedded readout.

To avoid projective cracks, a new mechanical design is under study.

This detector concept associated to Particle Flow Algorithms, would achieve a very good jet energy resolution.

Digital: Semi-digital: 0.5, 10, 100 MIP Tile size: 1cm×1cm 25 Single particle 20 15 Analog 10 Digital Semi-Digital Real Data 1/ E(GeV-1/2)

From KEK(Matsunaga et al)

0.5MIP

TILC09 April 17-21 Tsukuba

kieffer@ipnl.in2p3.fr

GlassRPCs spec.

- Polarisation: 6.5 kV to 8 kV (avalanche mode)
- ➤ GRPC thickness: 3.2 mm (1.2 mm gas gap + 1.2 & 0.7 mm glass plates + mylar foil)
- ➤ Gas mix: 93% TFE, 5% Isobutane, 2% SF₆
- Inductive readout (Noise rate 1 Hz/cm²)
- Easy/low-cost to build, robust, good efficiency!

First Semi Digital Readout

> 8 layers PCB (800 µm thick)

Threshold 2

- Readout chip: 4x daisy chained HADROCs (64 semi digital channels each)
- > 256 sensitive pads (1x1 cm²)

Threshold 1

- > Acquisition:
 - -> FPGA +USB
 - -> Graphical interface: Labview
- > Slow control parameters:
 - -> Gain of each channel (from calibration)
 - -> 2 Thresholds levels
- > Signal format: Timing Flag (BCID)+ Threshold(s) reached

Current GRPC R&D

Electrodes optimisation:

- ☐ Test of different resistive coating materials:
- Licron, Statguard, Graphite (see test beam results)
- -> Impact on detector hit multiplicity, and suitable rate.
- Optimisation of resistive coating connexion to supply
- -> Improve the GRPC lifetime (critical point on GRPC)
- -> Minimise noise generated by the interface copper/coating
- \square Build electrodes with semi conductive glass (10¹⁰ Ω .cm)
- ->Improve detection rate up to 28 kHz/cm²

Gas flux optimisation:

- ☐ Gas flux simulation
 - -> Improve gas renewal for an homogeneous efficiency
- Minimise chamber's dead zones:
 - -> Use of ceramic ball as ponctual spacers
 - -> Chamber's frame used as gas distributor

Test Beam @ CERN

Main goals:

- Test small GRPC performances (32x8 PADs):
 - ➤ Different energies (1-12 GeV).
 - Different beam rates (20-6000 triggers/spill).
 - Scan of impact angles.
 - Use of EUDET pixel telescope (Track reconstruction).
- Test of the electronic readout
 - Under realistic flux conditions (about 100Hz).
 - > Evaluation of detector's response according to the DAC's threshold level.
- First record of hadronic shower with mini DHCAL (iron slab between detectors).

Test Beam @ CERN

Beam test periods:

PS T10	17-24 July	260 kEvents
PS T9	28 July - 4 August	80 kEvents
PS T9	7-12 November	65 kEvents

Selecting events

High Voltage scan

- DAC's Thresholds: lower 120 fC / higher 450fC
- Plateau: 7.2 to 8 kV
 - -> Efficiency between 80 and 98%
- Lower multiplicity is preferred.
 - -> Best ratio multiplicity/efficiency: around 7.4 kV
- Until now the licron coated detector seems to be the best candidate:
 - -> it has the **lowest multiplicity** and shows **very good efficiency** performance.

Threshold scan

- Multiplicity moving as expected => lowering as threshold increases.
- Efficiency decreasing down to 80% at 1.1 pC threshold.

Use of EUDET Pixel Telescope

Use of EUDET Pixel Telescope

TILC09 April 17-21 Tsukuba kieffer@ipnl.in2p3.fr

Other studies

Angle scan:

- Efficiency quite constant, even for large angles.
- It allows good reconstruction in detector's end-caps.

Evolution of performances with particle flux:

- Me made some correlation with particle flux (obtained with scintillators), and chamber's efficiency.
- It gives us some preliminary results about GRPC running in ILC beam conditions.

Hadronic showers

Number of hits in each detector

Hadronic showers are mostly uncontained in Mini DHCAL but these profiles give a first idea of shower development, and energy deposition.

Muon contamination area

Widom Contamination area

kieffer@ipnl.in2p3.fr

TILC09 April 17-21 Tsukuba

Hadronic showers Vs Simulation

Here are the distribution of **hit's total number** in mini DHCAL for test beam data and simulated data.

Test beam summary

Total data: 325 kEvent (First DAQ's rate 20Hz)

- Most part of the data analyzed.
- Best understanding of our detector, leading to realistic 1m2 detector development.
- > We learn a lot about DAQ in beam conditions.
- That was the first record of hadronic showers in a 1cm² Mini DHCAL

Current development: 1m² GRPCs

1m2 GRPCs were built with different options, and a mechanical structure as been done by CIEMAT to support electronics.

Current development: 1m² DAQ

DIFF+ASU:

- ➢ 6 slabs of 24 asic each, were produced and equiped whith HARDROC1.
- Slabs connected 2 by 2 using "zero" resistors.
- Software using Xdaq/USB was developed (as debug mode).
- Slow control & data acquisition were successfully tested! (in cosmic mode).
- More info on DAQ see C.Combaret's talk.

kieffer@ipnl.in2p3.fr

DIF

TILC09 April 17-21 Tsukuba

1m² Cosmic tests

First data taking on a large detector, using cosmic bench (scintillator trigger)

Next step: 1m³ Project

The aim is to build a realistic prototype, validating the technological solution we propose for the ILD concept.

Technological prototype is made with:

- 40 planes of 1m²
- One plane composed by:20 mm s.steel absorber + 6 mm GRPC/PCB
- > A mechanical structure supporting the planes.
- A parallel gas distribution system.

Important points:

- Mechanical structure development:
 1m³ of (Absorber+GRPC) is about 6 ton weight.
- Use of gas system with re-cycling option.
- Semi Digital readout of 368.640 channels:
 DAQ, event building, & data storage.

1m³ containment simulations

- With a 1m³ DHCAL, hadronic shower could be mainly contained, even for high energy pions (about 100 GeV).
- We already try to evaluate the energy deposition to help the 1m³ design.
- The 40 planes of 9216 channels each, will permit us to have the complete profile of the showers, with a very high granularity.
- As the HARDROC2 will have 3 thresholds, we try to evaluate the number of fired pads for different thresholds values, to better reconstruct the energy.

Simulations for an ILD integration

- Simulations were done with Mokka software integrating DHCAL geometry. Event produced: single klong & uds.
- First analysis was done using Marlin with single threshold at 0.1 MIP in Mark Thomson's PFAnalysis module.

SemiDigitalHCAL with PFA:

- Particle Flow Algorithm need to be optimized to use the full potential of a multi threshold DHCAL.
- More work has to be done for it.

Conclusion & Outlook

An hadronic calorimeter with semi-digital readout is a very promising candidate for future linear colliders experiments!

- We learn a lot with test beams.
- > 1m² chambers have been produced minimizing dead zones.
- Electronic was tested for both small chamber (test beam), and 1m² ones (cosmic).

Outlook & plans:

- > Bring 1m² chambers fully equipped on test beam at CERN (End of June)
- Use CERN's Gamma Irradiating Facility to learn about detector's lifetime.
- > Start 1m² chambers production for the 1m³ prototype (40 to be done)
- Built 1m³ mechanical structure
- ➢ Have a test beam with 1m³ in second half of 2010
- Improve PFA algorithms to optimize reconstruction.

Thanks for your attention.

Other studies

The first tests using CO₂ to replace isobutane are quite promising.

(Gas mix with C0₂ will be intensively tested next test beam)

Readout Calibration

1DAQ = 2±1 fC (Injected charge: 100 fC)

Reduction of channel dispertion by a factor 3