The ILD software framework – status and plans

Frank Gaede DESY TILC09, Tsukuba, 17-21 April 2009

Outline

- Introduction
- The framework tools
- Simulation and Reconstruction
 - LOI Monte Carlo production
- Plans
- Summary

The ILD software framework - LDC flavor

- Mokka (LLR)
 - geant4 simulation application
- LCIO (DESY/SLAC)
 - international standard for persistency format / event data model
- Marlin

details at http://ilcsoft.desy.de

 core application framework for reconstruction & data analysis

- geometry package f. reconstruction
- LCCD
 - conditions
 - data toolkit (DB)
- CED

3d event display

LCIO: persistency & event data model

- joined DESY and SLAC project
 - first presented @ CHEP 2003
- provides persistency (I/O) and an event data model to ILC detector R&D community
- features:
 - Object I/O (w/ pointer chasing)
 - schema evolution
 - compressed records
 - hierarchical data model
 - decoupled from I/O by interfaces
 - C++, Java (and Fortran)
 - some generic user object I/O

LCIO is used by ILD, SID, Calice, EUPixelTelescope, LCTPC,...

MARLIN application framework

Modular Analysis & Reconstruction for the LI Near Collider

- modular C++ application framework for ILC detector R&D
- component based
- shared library plugins
- LCIO as transient data model
- xml steering files
 - configure application @ runtime
 - processor parameters
- self documenting
- consistency check of input/output collection types
- built in logging mechanism

marlin::Processor
init()
processRunHeader(LCRunHeader* run)
processEvent(LCEvent* evt)
check(LCEvent* evt)
end()

GEAR geometry description

- detailed geometry for simulation with Mokka/geant4:
 - MySQL data base with parameters
 - C++ drivers per subdetector
 - at reconstruction:
 - high level abstract interface:
 - per subdetector type (Hcal,TPC,...)
 parameters/quantities for reconstruction
 - geometry + some navigation
 - implementation uses xml files
 - abstract interface for detailed geometry &materials:
 - point properties
 - path properties
 - implementation based on geant4

other framework users

>300 Mio events ~40 TB (incl.MC/processed)

TILC09,

Frank Gaede,

- framework not only used for ILD detector optimization – also for ILC testbeam experiments:
- CALICE
- MarlinTPC
- EUTelescope
- synergies from using the same framework for testbeam and large detector studies

LDC & GLD sw frameworks

Jupiter Mokka

LCIO

Satellites MarlinReco

- ILD merged from GLD&LDC in 2007
- two independent frameworks existed the 2 regions
- use both for LOI detector optimization
 - -> LCIO & GEAR provide basis for interoperability

Data Model

Event

ILD software interoperability Jupiter Mokka geant4 geant4 gear_LDGPrime02Sc.xml GEometry API for Reconstruction **Monte Carlo MCParticle** MarlinReco et al SimCalorimeterHit SimTrackerHit LCRelation LCRelation **LCRelation** Track&CaloDigi TrackerRawData RawCalorimeterHit TrackerData RawData **FullLDCTracking TrackerPulse** TrackerHit **PandoraPFA** CalorimeterHit **Digitization** DurhamJetFinder **Track** Cluster **Reconstruction &** LCFIVertex- flav.tag **Analysis** ReconstructedParticle Vertex

Full&DSTOutput

Frank Gaede, TILC09, Tsukuba, 16-21 April 2009

stainless steel

aluminium

scintillator (polystyrene)

Digitization strategy

VXD, SIT, FTD, SET, ETD Silicon hits

- smearing of 3d space points (SimTrackerHits) according to envisaged detector resolutions
 - as established by R&D groups
- also more detailed digitizers exist for Silicon detectors for dedicated studies

TPC hits

- smearing of 3d space points (SimTrackerHits) taking into account drift distance, polar and azimuthal angle of track
 - parameterization from TPC R&D groups
- Ecal, Hcal, Lcal, beamcal, LHcal, Muon Calo hits
 - calibration (single particle resolution)

MarlinReco - FullLDCTracking

- VTX, SIT, FTD: standalone tracking
 - track finding and Kalman-Fittter
- TPC: standalone Kalman-Filter based tracking (wraped LEP code)
- LDCTracking
 - combine tracks elements
 - find loopers
 - → refit w/ Kalman-Filter

e.g.

30 GeV

particle flow: PandoraPFA

18 GeV

12 GeV

\star For a Gauge boson mass resolution of order $\,\Gamma_{W/Z}$

 $Z \rightarrow u\overline{u}, dd, s\overline{s}$ decays at rest |cos θ |<0.7

E _j	σ(E _{jj})	$\sigma(E_{jj})/\sqrt{E_{jj}}$	$\sigma(E_j)/E_j$
45 GeV	2.4 GeV	25 %	3.7 %
100 GeV	4.1 GeV	29 %	2.9 %
180 GeV	7.5 GeV	40 %	3.0 %
250 GeV	11.1 GeV	50 %	3.2 %

10 GeV Track

- PandoraPFA
 - best Particle flow for ILC to date
 - used in several studies for detector optimization
 - demonstration of PFA concept for the ILC

LCFIVertex

Implementation of ZVTOP vertex finding algorithm

Heavy-Flavor Tag based on neural networks

Vertex-Charge for b and c jets

LOI Monte Carlo mass production

- massive production of Monte Carlo events needed for ILD optimization (based on GLD/LDC) and physics performance studies for current ILD model
- use LCG GRID resources (DESY, in2p3, UK,...)
 - have developed Grid job submission scripts, monitoring, web based data catalogues,...
- produced >50 M events w/ Mokka (geant4) fully reconstructed w/ MarlinReco, PandoraPFA etc
 - LOI benchmark reactions (~500 1/fb) results: M. Thomson's plenary talk
 - corresponding SM sample (WHIZARD, generated at SLAC (DESY))
- ILD software (incl.geant4) ran very stable GRID sometimes flaky
- biggest bottle neck: job submission (needs work...)

Plans for ILD software

- ILD has software mature software tools that have been used successfully for the LOI
- next steps:
- create a common ILDsoft framework based on LCIO, Marlin with 'goodies' from JSF framework
- for this need to investigate interface to ROOT
 - for user analyses based on macros/trees, I/O,...
- also some long planned and requested developments have been put on hold, due to LOI and limited manpower:
 - improve LCIO
 - improve the geometry system

collaboration w/ other groups is highly welcome

Improving LCIO -> LCIOv2

- LCIO is persistency and data model separated through abstract interface
 - -> both can be developed independently!
- improving the persistency
 - I/O performance
 - direct access
 - splitting&merging files
 - allow for simple streaming of user defined classes (testbeam hardware)
- evaluate using ROOT-I/O

- improving the data model:
 - allow multiple fits for Tracks
 - provide specializedTrackerHits, e.g. for strips
 - improved relations !?
 - learn from JSF data model...
 - user feedback needed!

it is probably time to abandon F77!

Improving the geometry description

- Mokka-MySQL being the leading system not optimal
- should have standalone geometry system for
 - simulation, reconstruction, analysis, event displays
 - provide interfaces with the appropriate level of detail at the various stages
 - based on common standards, e.g. GDML
- allow for smooth transition from existing tools (e.g. extend existing GEAR interfaces)
- unified/combined with conditions data base !?
- request from CALICE to extend GEAR...
- ideally this would be a common project for all concepts/groups working on ILC detector R&D!

Testing and Validation

- testing of software tools has been left to the judgement of the developer
- ·ideally we should have an automated test system (run at nightly build/on cvs commits)
 - possibly unit tests?
- integration tests
- also validation of 'physics performance':
 - · checkplots, resolutions, overlaps?,....
- -> would have saved us some work in the past

Summary & Outlook

- ILD software tools successfully used for LOI
- will move towards one software framework based on LCIO, Marlin with goodies from JSF
- planned improvements and developments
 - automated test and validation system
 - investigate usage of ROOT
 - LCIOv2 data model and persistency
 - geometry
- ILD is open for collaboration on software tools and we would welcome any new group to join in on using (and improving) LCIO and possibly work on a common geometry system

additional material

LCGO geometry tool - proposal

- driver based approach
 a la Mokka
- MySQL DB replaced by xml files

- LCGO a planned geometry toolkit (DESY/SLAC 2006)
 - based on geometry drivers written in JAVA!
 - use gcj-compiler to compile to binary & interface with C++
- issues with performance 4 times slower than C++ (2007)
- -> could look into implementing similar concept in C++
- also investigate existing packages TGeo, VGeometry,...