Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology

Kei Yagyu Univ. Toyama

Collaborators

Mayumi Aoki, Shinya Kanemura, Koji Tsumura arXiv:0902.4665 [hep-ph]

> April 20 TILC09 @Tsukuba, Japan

Possibility of extended Higgs models

- Higgs boson has not been discovered.
 - → Various possibilities for extended Higgs sector
- Problems which cannot be explained in the SM
 - →Need to go the beyond SM
 - →Extended Higgs models appear in low energy effective theories

- Hierarchy problem
- Tiny neutrino mass
- Dark matter
- Baryon asymmetry of Universe

Extended Higgs models \(\boxed{\operation}\) New physics

Two basic constraints from the experimental data

① Electroweak precision measurements (LEP)

$$\rho_{\text{tree}} = \frac{\sum_{k} v_{k}^{2} [T_{k}(T_{k}+1) - Y_{k}^{2}] c_{k}}{\sum_{k} 2Y_{k}^{2} v_{k}^{2}} = 1$$

$$r_{k} : \text{hypercharge}$$

$$v_{k} : \text{vev}$$

$$c_{k} = \begin{cases} 1 & \text{for complex field} \\ 1/2 & \text{for real field} \end{cases}$$

Multi Higgs doublets (+ singlets)

② To avoid tree-level FCNC

Two basic constraints from the experimental data

① Electroweak precision measurements (LEP)

$$\rho_{\text{tree}} = \frac{\sum_{k} v_{k}^{2} [T_{k}(T_{k}+1) - Y_{k}^{2}] c_{k}}{\sum_{k} 2Y_{k}^{2} v_{k}^{2}} = 1$$

 Y_k : hypercharge

 T_k : isospin

 v_k : vev

 $c_k = \begin{cases} 1 & \text{for complex field} \\ 1/2 & \text{for real field} \end{cases}$

② To avoid tree-level FCNC

GIM mechanism

Discrete Z₂ symmetry

Two-Higgs-Doublet Model (THDM)

Simplest extended Higgs model

```
\Phi_1 THDM: \Phi_1, \Phi_2 H<sub>SM</sub> h, H, A, H<sup>±</sup>
```

• Physical states: H_{SM}

MSSM, NMSSM, etc...

Possible models of DSB Holdom arXiv/0606146

Radiative neutrino mass model

So, it would be valuable to study collider phenomenology of THDM.

Higgs potential under the discrete symmetry

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} |\Phi_{1}|^{2} + m_{2}^{2} |\Phi_{2}|^{2} - m_{3}^{2} [\Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{1}{2} \lambda_{1} |\Phi_{1}|^{4} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right]$$

$$\Phi_{i} = \begin{pmatrix} \omega_{i}^{+} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} - i z_{i}) \end{pmatrix}$$

$$\Phi_{i} = \begin{pmatrix} \omega_{i}^{+} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} - i z_{i}) \end{pmatrix}$$

$$\Phi_{i} = \begin{pmatrix} \omega_{i}^{+} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} - i z_{i}) \end{pmatrix}$$

Physical degrees of freedom: 8-3=5 H^{\pm} , A, H, h

Charged CP-odd CP-even

Higgs mechanism

The physical states are defined by the mixing angles α and β .

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \mathbf{R}(\alpha) \begin{pmatrix} H \\ h \end{pmatrix}, \quad \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \mathbf{R}(\beta) \begin{pmatrix} z \\ A \end{pmatrix}, \quad \begin{pmatrix} \omega_1^+ \\ \omega_2^+ \end{pmatrix} = \mathbf{R}(\beta) \begin{pmatrix} \omega^+ \\ H^+ \end{pmatrix} \qquad \mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

The ratio of vevs is defined by $\tan \beta = v_2/v_1$

And the soft breaking mass parameter is $M=m_3/\sqrt{\sin\beta\cos\beta}$.

Type of Yukawa interaction in THDM

Four types of Yukawa interactions under the discrete symmetry (to avoid FCNC)

• Type-II THDM: MSSM

 Φ_1 couples to down-type quarks and leptons.

 Φ_2 couples to up-type quarks.

b→sγ bound is very strong

	Φ_1	Φ_2	Q^i	L^i	u_R^i	d_R^i	e_R^i
Type-I	+	_	+	+	_	_	
Type-II	+	_	+	+	_	+	+
Type-X	+	_	+	+	_	_	+
Type-Y	+	_	+	+	_	+	_

• Type-X THDM: AKS model

Barger, Hewett, Phillips PRD 41 (1990)

 Φ_1 couples to leptons

Grossman NPB 426 (1994)

 Φ_2 couples to quarks

b→sγ bound is mild

Light H⁺ is possible!

In this talk, we mainly discuss the Type-X THDM and the MSSM

$b \rightarrow s \gamma$

Aoki, Kanemura, Tsumura, K.Y arXiv:0902.4665 [hep-ph]

NLO calculation

Ciuchini et al. Nucl. Phys. B 527, 21 (1998).

NNLO calculation

Misiak, Steinhauser, Nucl. Phys. B 764, 62 (2007).

Misiak et al., PRL. 98, 022002 (2007).

 $m_{H^{+}} > 295 \text{GeV} [95\% \text{ C.L.}] (\text{Type-II}, Y)$

No bound (Type-I, -X)

Light charged Higgs are possible in the Type-X and MSSM

A decays

 $m_{A} = m_{H^{+}} = 150 \text{GeV}$

Type-I, -II, -Y
$$\rightarrow$$
 bb , Type-X \rightarrow $\tau^+\tau^-$ (Also H decays when $\sin(\beta-\alpha)=1$)

H⁺ decays

 $m_{A} = m_{H+} = 150 \text{GeV}$

Type-I, -II, -X $\rightarrow \tau v$, Type-Y \rightarrow cb (hadron jets)

Discrimination between models in the light charged Higgs scenario at the LHC

Scenario

$$m_A = m_H = m_{H^+} : 130 \sim 150 \text{GeV}$$

 $\sin(\beta - \alpha) = 1$

$$M \sim m_A = m_H = m_{H^+}$$

Custodial symmetry exists, and perturbative unitarity is satisfied with this condition.

- Single A/H production at the LHC
- Higgs pair production (AH⁺, HH⁺) at the LHC

Single A/H production at the LHC (30fb⁻¹)

 $\tan\beta=10$, $m_A=150$ GeV, MSSM

(ATLAS TDR)

$gg \rightarrow A/H \rightarrow \tau^+\tau^-$

Signal (after the cut): 49

Background (after the cut)

W+jet : 530

tt : 7

bb : 14

 Z/γ^* : 163

Sum : 714

Kinematical cuts

- A veto against b-jets for $p_T>15GeV$ and $\eta<2.5$.
- τ τ 's invariant mass cut. $m_{\tau\tau}$ -1.5 σ < $m_{\tau\tau}$ < $m_{\tau\tau}$ +1.5 σ σ ~27GeV

$pp \rightarrow bbA/H \rightarrow bb\tau^+\tau^-$

Signal (after the cut): 72

Background (after the cut)

W+jet : 46

 tt :

bb : 29

 Z/γ^* : 5

Sum : 86

Kinematical cuts

- At least one tagged b-jet.
- At most two non-b jets with $p_T>15 GeV$ and $\eta<3.2$.
- τ τ 's invariant mass cut. $m_{\tau\tau}$ -1.5 σ < $m_{\tau\tau}$ < $m_{\tau\tau}$ +1.5 σ σ ~39GeV

Significance (S/root(B))

Aoki, Kanemura, Tsumura, K.Y arXiv:0902.4665 [hep-ph]

AH⁺ (HH⁺) production at the LHC (300fb⁻¹)

 $\sigma(ud\rightarrow HH^+)\sim 100 fb$ 30000 AH⁺ (HH⁺) events at 300 fb⁻¹

bbτν→MSSM (Type-II) τττν→Type-X

Physics of the Type-X THDM at the ILC

Discrimination of the models at the ILC

 $m_A=m_H=150GeV$, $sin(\beta-\alpha)=1$, $tan\beta=10$ and root(s)=500GeV

	Type-II	Type-X
BR $(A/H \rightarrow \tau\tau)$	0.105	0.995
BR $(A/H \rightarrow \mu\mu)$	O (10 ⁻⁴)	0.003

Type-X branching ratio of leptonic decay is much larger than Type-II one. The ττμμ and ττττ mode are valuable to study the Type-X Yukawa interaction.

Signal background analysis for ττμμ events

$\sigma_{\mu\mu\tau\tau}$ [fb]	AH	ZZ	$Z\gamma$	$\gamma\gamma$
No cut	0.192	0.954	2.60	1.72
$ \cos\theta < 0.99$	0.190	0.912	1.67	0.974
$ \cos\theta < 0.9$	0.179	0.647	0.103	0.585
$M_{\mu\mu} \leq m_{\Phi} \pm 5 \text{ GeV}$	0.191	0.002	0.009	0.007

For L=500fb⁻¹
After invariant mass cuts
S~96
B~9

Taking kinematical cuts we can obtain $S/Sqrt(S+B) \sim 9$

Signal background analysis for ττ ττ events

The $\tau\tau$ invariant mass distribution

Taking kinematical cuts we can obtain $S/Sqrt(S+B) \sim 85 !!$ But we assumed that tau tagging efficiency is 100%

0.039

0.021

B~41

Realistic simulation study is necessary.

0.021

14.7

Summary of the model discrimination in the light H[±] scenario

Summary

- In the THDM, there are four types of Yukawa interaction under the discrete symmetry to avoid tree-level FCNC.
- The Type-II THDM corresponds to the MSSM Yukawa interaction, while the Type-X is motivated such as in the TeV scale model of neutrino, dark matter, and baryogenesis.
- In the Type-X, $b \rightarrow s\gamma$ bound is very mild.
 - →Light charged Higgs scenario is possible.
- By measuring single A/H production (LHC) and AH⁺, HH⁺, AH production (LHC and ILC), one could test the **Type-X THDM**.
 - Extended Higgs models ⇔ New physics

	Type-II,Y	Type-I,X		
$\bar{s}tH^-$	$\frac{\sqrt{2}}{v}V_{ts}^*\left[m_s \tan \beta P_L + m_t \cot \beta P_R\right]$	$\frac{\sqrt{2}}{v}V_{ts}^*\left[-m_s\cot\beta P_L + m_t\cot\beta P_R\right]$		
$\bar{t}bH^+$	$\frac{\sqrt{2}}{v}V_{tb}\left[m_b \tan \beta P_R + m_t \cot \beta P_L\right]$	$\frac{\sqrt{2}}{v}V_{tb}\left[-m_b\cot\beta P_R + m_t\cot\beta P_L\right]$		

Type-II, Y

Barger, Hewett, Phillips PRD 41 (1990)

$$\Gamma(b \to s\gamma) = \frac{\alpha_{EM} G_F^2 m_b^5}{128\pi^4} \left| V_{ts}^* V_{tb} \left[G_W \left(\frac{m_t^2}{m_W^2} \right) + 1 \cdot G_H^1 \left(\frac{m_t^2}{m_{H^\pm}^2} \right) + \cot^2 \beta G_H^2 \left(\frac{m_t^2}{m_{H^\pm}^2} \right) \right] \right|^2$$

Type-I, X

$$\Gamma(b \to s\gamma) = \frac{\alpha_{EM} G_F^2 m_b^5}{128\pi^4} \left| V_{ts}^* V_{tb} \left[G_W \left(\frac{m_t^2}{m_W^2} \right) - \cot^2 \beta G_H^1 \left(\frac{m_t^2}{m_{H^{\pm}}^2} \right) + \cot^2 \beta G_H^2 \left(\frac{m_t^2}{m_{H^{\pm}}^2} \right) \right] \right|^2$$

In the Type-X THDM, destructive interferences occur between the W and the H[±] contributions.

$$G_W(x) = \frac{2 - 7x + 11x^2}{4(1 - x)^3} - \frac{1}{2} + \frac{3x^3}{2(1 - x)^4} \ln x + \frac{2}{3} \left[\frac{1 - 5x - 2x^2}{4(1 - x)^3} - \frac{1}{4} - \frac{3x^2}{2(1 - x)^4} \ln x \right]$$

$$G_H^1(x) = \frac{x}{(1 - x)^3} \left[\frac{1}{2} (1 - x^2) + x \ln x - \frac{2}{3} \left(\frac{3}{2} - 2x + \frac{1}{2} x^2 + \ln x \right) \right]$$

$$G_H^2(x) = \frac{x}{2(1 - x)^4} \left[\left(\frac{1}{6} - x + \frac{1}{2} x^2 + \frac{1}{3} x^3 - x^2 \ln x \right) + \frac{2}{3} \left(\frac{1}{3} + \frac{1}{2} x - x^2 + \frac{1}{6} x^3 + x \ln x \right) \right]$$

D.s.Du arXiv:0709.1315 [hep-ph]
Krawczyk, Sokolowska arXiv:0711.4900 [hep-ph]
Aoki, Kanemura, Tsumura, K.Y arXiv:0902.4665 [hep-