Study of Little Higgs Model with T-parity ## '09 4/20 Y. Takubo (Tohoku U.) - S. Matsumoto(Toyama), M. Asano(Tokyo), E. Asakawa(Meiji-gauin), - K. Fujii(KEK), T. Kusano(Tohoku), R. Sasaki(Tohoku) #### **Contents** - Introduction - Analysis - Determination of VEV & Ωh^2 - Summary # Little Higgs model with T-parity ## Little Higgs mechanism Global symmetry: SU(5) Subgroup: $[SU(2) \times U(1)]^2$ Symmetry breaking SO(5) $VEV(f) : \sim 1 \text{TeV}$ $SU(2)_L \times U(1)_Y$ - Heavy gauge bosons obtain their masses through the symmetry breaking. - Masses of A_H, Z_H, and W_H have information of VEV(f). - A_H is a dark matter candidate. The observation of heavy gauge bosons at ILC was studied. ## Representative point The representative point for simulation study was selected with constraint from WMAP observation. A_H , W_H , and Z_H can be observed at ILC (500GeV – 1TeV). # Analysis modes According to the beam energy at ILC, two analysis modes were selected. ## Analysis modes • $$A_H + Z_H$$ @ $E_{CM} = 500 \text{ GeV}$ > xsec: 1.91 fb $$> Z_H \rightarrow H + A_H$$ $$M_{AH} + M_{ZH} = 450.9 \text{ GeV}$$ - $W_{H}^{+} + W_{H}^{-} @ E_{CM} = 1 \text{ TeV}$ - > xsec: 277 fb - \rightarrow W_H \rightarrow W + A_H $$M_{WH} + M_{WH} = 736 \text{ GeV}$$ # Simulation study ## **Simulation procedure** - Event generation - > MadGraph or Physsim - > Hadronization is done by Pythia - > ISR, FSR, beamstrahlung, and beam energy spread are ignored. - Detector simulation - > Quick-sim for GLD - Analysis - > ROOT based analysis #### Event display of a W_HW_H event ## Z_HA_H at E_{CM}=500GeV # Signal v.s. B.G. at E_{CM}=500GeV ### **Event selection** - Assumption of b-tag performance - > 80% efficiency for b-jet - > 10% mis-identification of light quarks - Signal significance: 3.7 ### \rightarrow We will obtain the indication of new physics at E_{CM}=500GeV. | Process | xsec(fb) | No cut 100 | $0 < m_h < 140$ | $P_{\rm t}^{\rm miss} > 80$ | b-tag | |--|----------|------------|-----------------|-----------------------------|-------| | $A_H Z_H \rightarrow A_H A_H b \bar{b}$ | 1.05 | 525 | 488 | 425 | 272 | | $\gamma Z \rightarrow \gamma b \overline{b}$ | 1,200 | 600,000 | 19,296 | 7 0 | 45 | | $tt \longrightarrow W^+W^-b\bar{b}$ | 496 | 248,000 | 859 | 413 | 264 | | $\nu\nu Z \rightarrow \nu\nu b\bar{b}$ | 44.3 | 22,150 | 635 | 261 | 167 | | $\nu \nu h \rightarrow \nu \nu b \bar{b}$ | 34.0 | 17,000 | 15,170 | 5,247 | 3,359 | | $ZZ \rightarrow \nu \nu b \bar{b}$ | 25.5 | 12,750 | 404 | 277 | 178 | | $Zh \rightarrow \nu \nu b \bar{b}$ | 5.57 | 2,785 | 2,390 | 2,196 | 1,406 | | Total | | 860,105 | 38,727 | 8,464 | 5,419 | ## Determination of A_H & Z_H mass Masses of A_H and Z_H are determined by the edge of E_h distribution. Measurement accuracy • M_{AH} : 83.2 ± 13.3 GeV • M_{ZH} : 366.0 \pm 16.0 GeV • M_{AH} : 16.2% • $M_{ZH}: 4.3\%$ Masses of A_H and Z_H might be determined at E_{CM} =500GeV. # W_HW_H at E_{CM}=1TeV # Signal v.s. B.G. at E_{CM}=1TeV - Xsec of W_HW_H is very large, comparing to the SM background. - → Easy to observe the signal at 1TeV - The excellent SN was obtained with simple selection cuts. - $> E_W < 500 \text{ GeV}$ - > $\chi_2 < 26$ - \rightarrow missing $P_T > 84 \text{ GeV}$ | Process | | xsec(fb) | No cut | $E_W < 500$ | $\chi_W^2 < 26$ | $P_{\rm t}^{\rm miss}{>}84$ | |-------------------------|---|----------|---------|-------------|-----------------|-----------------------------| | $W_H^+W_H^-$ | $\rightarrow A_H A_H q \bar{q} q \bar{q}$ | 120 | 60,000 | 59,880 | 48,135 | 41,190 | | W^+W^- | $\rightarrow q\bar{q}q\bar{q}$ | 1307 | 653,500 | 551,688 | 16,1120 | 678 | | $e^+e^-W^+W^-$ | $\rightarrow e^+e^-q\bar{q}q\bar{q}$ | 490 | 245,000 | 237,640 | 128,904 | 46 | | $e\nu_eWZ$ | $\rightarrow e \nu_e q \bar{q} q \bar{q}$ | 24.5 | 12,250 | 11,946 | 6,994 | 3,797 | | $Z_H Z_H$ | $\rightarrow A_H A_H q \bar{q} q \bar{q}$ | 18.8 | 9,400 | 9,389 | 266 | 213 | | $\nu \bar{\nu} W^+ W^-$ | $ ightarrow u ar{ u} q ar{q} q ar{q}$ | 7.23 | 3,615 | 3,602 | 2,607 | 1,597 | | ZW^+W^- | $ ightarrow u ar{ u} q ar{q} q ar{q}$ | 5.61 | 2,805 | 2,744 | 1,839 | 1,533 | | Total | | | 926,570 | 817,009 | 301,730 | 7,864 | ## Determination of A_H & W_H mass Masses of A_H and W_H are determined by the edge of E_h distribution. Measurement accuracy • M_{AH} : 81.58 \pm 0.67 GeV • M_{WH} : 368.3 ± 0.63 GeV • $M_{AH}: 0.8\%$ • M_{WH} : 0.2% Masses of A_H and W_H can be determined within 1% at E_{CM} =1TeV. # Spin of W_H & helicity of W - The angular distribution of W_H is different from that of spin-0. - → We can distinguish the type of new particle from new physics. - Angular distribution of jets in W rest-frame shows the contribution of longitudinal component. - → The coupling is confirmed to arise from the symmetry breaking. # Gauge charge of W_H ## W_H coupling - W_H has SU(2) charge with no U(1) charge. e - At high energy, Z~W³ almost couples to left-handed. →W_H charge can be checked by relation of xsec. and the beam polarization. Zero xsec. for fully right-handed polarization can be observed. \rightarrow At ILC, we can confirm that W_H has no U(1) charge. ## Determination of VEV & Ωh^2 # Sensitivity to VEV(f) Sensitivity to VEV(f) was estimated by measurement accuracy of the heavy gauge bosons. • $M_{AH} \sim sqrt(0.2)$ g' f, $M_{ZH, WH} \sim g$ f #### ILC has excellent sensitivity to VEV. ## Sensitivity to relic abundance Finally, sensitivity to the relic abundance was investigated. Relic abundance of A_H: $$\Omega_{\rm DM}h^2 = \frac{1.07 \times 10^9 x_f \rm GeV^{-1}}{\sqrt{g_*} m_{Pl} < \sigma \rm v >}$$ Annihilation xsec of A_H • Function of M_{AH} Sensitivity to Ωh^2 depends on the measurement accuracy of M_{AH} . - ~10% @500GeV - ~1% @1TeV **Annihilation processes of A**_H ## Summary - ILC has excellent sensitivity to the Little Higgs parameters. - > M_{AH}: 16.2%, M_{ZH}: 4.3% @ 500 GeV - > M_{AH}: 0.8%, M_{WH}: 0.2% @ 1TeV - > VEV (f): 4.3% @500GeV, 0.1% @1TeV - $> \kappa_1 : 9.5\% @500 \text{GeV}, 0.8\% @1 \text{TeV}$ - The relic abundance of A_H also can be confirmed precisely. - >~10% @ 500GeV, ~1% @ 1TeV - The paper on this study was accepted by PRD. (arXiv:0901.1081[hep-ph]) ## Sensitivity to κ_1 Sensitivity to κ_1 is estimated by using that to f. - $M_{eH} = sqrt(2) \kappa_1 f$ - $M_{vH} \sim sqrt(2) \kappa_1 f$ Sensitivity to κ_{l} { • 9.5% @500GeV e^{-} γ_{2} N_{H} N_{H} N_{H} N_{H}