Study of Little Higgs Model with T-parity

'09 4/20 Y. Takubo (Tohoku U.)

- S. Matsumoto(Toyama), M. Asano(Tokyo), E. Asakawa(Meiji-gauin),
- K. Fujii(KEK), T. Kusano(Tohoku), R. Sasaki(Tohoku)

Contents

- Introduction
- Analysis
- Determination of VEV & Ωh^2
- Summary

Little Higgs model with T-parity

Little Higgs mechanism

Global symmetry: SU(5)

Subgroup: $[SU(2) \times U(1)]^2$

Symmetry breaking SO(5) $VEV(f) : \sim 1 \text{TeV}$ $SU(2)_L \times U(1)_Y$

- Heavy gauge bosons obtain their masses through the symmetry breaking.
- Masses of A_H, Z_H, and W_H have information of VEV(f).
- A_H is a dark matter candidate.

The observation of heavy gauge bosons at ILC was studied.

Representative point

The representative point for simulation study was selected with constraint from WMAP observation.

 A_H , W_H , and Z_H can be observed at ILC (500GeV – 1TeV).

Analysis modes

According to the beam energy at ILC, two analysis modes were selected.

Analysis modes

•
$$A_H + Z_H$$
 @ $E_{CM} = 500 \text{ GeV}$

> xsec: 1.91 fb

$$> Z_H \rightarrow H + A_H$$

$$M_{AH} + M_{ZH} = 450.9 \text{ GeV}$$

- $W_{H}^{+} + W_{H}^{-} @ E_{CM} = 1 \text{ TeV}$
 - > xsec: 277 fb
 - \rightarrow W_H \rightarrow W + A_H

$$M_{WH} + M_{WH} = 736 \text{ GeV}$$

Simulation study

Simulation procedure

- Event generation
 - > MadGraph or Physsim
 - > Hadronization is done by Pythia
 - > ISR, FSR, beamstrahlung, and beam energy spread are ignored.

- Detector simulation
 - > Quick-sim for GLD

- Analysis
 - > ROOT based analysis

Event display of a W_HW_H event

Z_HA_H at E_{CM}=500GeV

Signal v.s. B.G. at E_{CM}=500GeV

Event selection

- Assumption of b-tag performance
 - > 80% efficiency for b-jet
 - > 10% mis-identification of light quarks
- Signal significance: 3.7

\rightarrow We will obtain the indication of new physics at E_{CM}=500GeV.

Process	xsec(fb)	No cut 100	$0 < m_h < 140$	$P_{\rm t}^{\rm miss} > 80$	b-tag
$A_H Z_H \rightarrow A_H A_H b \bar{b}$	1.05	525	488	425	272
$\gamma Z \rightarrow \gamma b \overline{b}$	1,200	600,000	19,296	7 0	45
$tt \longrightarrow W^+W^-b\bar{b}$	496	248,000	859	413	264
$\nu\nu Z \rightarrow \nu\nu b\bar{b}$	44.3	22,150	635	261	167
$\nu \nu h \rightarrow \nu \nu b \bar{b}$	34.0	17,000	15,170	5,247	3,359
$ZZ \rightarrow \nu \nu b \bar{b}$	25.5	12,750	404	277	178
$Zh \rightarrow \nu \nu b \bar{b}$	5.57	2,785	2,390	2,196	1,406
Total		860,105	38,727	8,464	5,419

Determination of A_H & Z_H mass

Masses of A_H and Z_H are determined by the edge of E_h distribution.

Measurement accuracy

• M_{AH} : 83.2 ± 13.3 GeV

• M_{ZH} : 366.0 \pm 16.0 GeV

• M_{AH} : 16.2%

• $M_{ZH}: 4.3\%$

Masses of A_H and Z_H might be determined at E_{CM} =500GeV.

W_HW_H at E_{CM}=1TeV

Signal v.s. B.G. at E_{CM}=1TeV

- Xsec of W_HW_H is very large, comparing to the SM background.
 - → Easy to observe the signal at 1TeV
- The excellent SN was obtained with simple selection cuts.
 - $> E_W < 500 \text{ GeV}$
 - > $\chi_2 < 26$
 - \rightarrow missing $P_T > 84 \text{ GeV}$

Process		xsec(fb)	No cut	$E_W < 500$	$\chi_W^2 < 26$	$P_{\rm t}^{\rm miss}{>}84$
$W_H^+W_H^-$	$\rightarrow A_H A_H q \bar{q} q \bar{q}$	120	60,000	59,880	48,135	41,190
W^+W^-	$\rightarrow q\bar{q}q\bar{q}$	1307	653,500	551,688	16,1120	678
$e^+e^-W^+W^-$	$\rightarrow e^+e^-q\bar{q}q\bar{q}$	490	245,000	237,640	128,904	46
$e\nu_eWZ$	$\rightarrow e \nu_e q \bar{q} q \bar{q}$	24.5	12,250	11,946	6,994	3,797
$Z_H Z_H$	$\rightarrow A_H A_H q \bar{q} q \bar{q}$	18.8	9,400	9,389	266	213
$\nu \bar{\nu} W^+ W^-$	$ ightarrow u ar{ u} q ar{q} q ar{q}$	7.23	3,615	3,602	2,607	1,597
ZW^+W^-	$ ightarrow u ar{ u} q ar{q} q ar{q}$	5.61	2,805	2,744	1,839	1,533
Total			926,570	817,009	301,730	7,864

Determination of A_H & W_H mass

Masses of A_H and W_H are determined by the edge of E_h distribution.

Measurement accuracy

• M_{AH} : 81.58 \pm 0.67 GeV

• M_{WH} : 368.3 ± 0.63 GeV

• $M_{AH}: 0.8\%$

• M_{WH} : 0.2%

Masses of A_H and W_H can be determined within 1% at E_{CM} =1TeV.

Spin of W_H & helicity of W

- The angular distribution of W_H is different from that of spin-0.
 - → We can distinguish the type of new particle from new physics.
- Angular distribution of jets in W rest-frame shows the contribution of longitudinal component.
 - → The coupling is confirmed to arise from the symmetry breaking.

Gauge charge of W_H

W_H coupling

- W_H has SU(2) charge with no U(1) charge. e
- At high energy, Z~W³ almost couples to left-handed.

→W_H charge can be checked by relation of xsec. and the beam polarization.

Zero xsec. for fully right-handed polarization can be observed.

 \rightarrow At ILC, we can confirm that W_H has no U(1) charge.

Determination of VEV & Ωh^2

Sensitivity to VEV(f)

Sensitivity to VEV(f) was estimated by measurement accuracy of the heavy gauge bosons.

• $M_{AH} \sim sqrt(0.2)$ g' f, $M_{ZH, WH} \sim g$ f

ILC has excellent sensitivity to VEV.

Sensitivity to relic abundance

Finally, sensitivity to the relic abundance was investigated.

Relic abundance of A_H:

$$\Omega_{\rm DM}h^2 = \frac{1.07 \times 10^9 x_f \rm GeV^{-1}}{\sqrt{g_*} m_{Pl} < \sigma \rm v >}$$

Annihilation xsec of A_H

• Function of M_{AH}

Sensitivity to Ωh^2 depends on the measurement accuracy of M_{AH} .

- ~10% @500GeV
- ~1% @1TeV

Annihilation processes of A_H

Summary

- ILC has excellent sensitivity to the Little Higgs parameters.
 - > M_{AH}: 16.2%, M_{ZH}: 4.3% @ 500 GeV
 - > M_{AH}: 0.8%, M_{WH}: 0.2% @ 1TeV
 - > VEV (f): 4.3% @500GeV, 0.1% @1TeV
 - $> \kappa_1 : 9.5\% @500 \text{GeV}, 0.8\% @1 \text{TeV}$
- The relic abundance of A_H also can be confirmed precisely.
 - >~10% @ 500GeV, ~1% @ 1TeV
- The paper on this study was accepted by PRD. (arXiv:0901.1081[hep-ph])

Sensitivity to κ_1

Sensitivity to κ_1 is estimated by using that to f.

- $M_{eH} = sqrt(2) \kappa_1 f$
- $M_{vH} \sim sqrt(2) \kappa_1 f$

Sensitivity to κ_{l} { • 9.5% @500GeV e^{-} γ_{2} N_{H} N_{H} N_{H} N_{H}

