

Measuring the Higgs self-coupling using the ILD detector

Michele Faucci Giannelli

TILC 09, Tsukuba, 18 April 2009

Overview

- Introduction:
 - -from ZHH cross section to Higgs self-coupling
- Event simulation and reconstruction
- 6-jet environment
- ZHH selection
- B tagging performance
- Conclusion

Physics parameters

CALI Calorimeter for ILC

 This process is best studied at 500 GeV and with a Higgs mass of 120 GeV to maximize the cross section

- Given the Z and Higgs SM decays:
 - BR (Z→qq) 70%
 - BR (H→bb) 73%

- The BR are:
 - qqbbbb (40%)
 - vvbbbb (16%)
 - qqbbWW (12%)
 - IIbbbb (only 4.5%)

- CM energy 500 GeV and M_H = 120 GeV
 - Maximizes the cross section
- Main channel is ZHH → qqbbbb
 BR = 40%
- The signal cross section is 0.18 fb
 - less than 100 signal events for 500 fb⁻¹
 - Only 31 qqbbbb events
- Several backgrounds with 6-jet final state:
 - tt is the main one with $\sigma = 550 \text{ fb}$
 - 160,000 hadronic events

- ILD samples used (both polarizations):
- 40000 ZHH→qqHH (~9000 qqbbbb)
- bbqqqq (tt compatible): 500 fb⁻¹
- qqqqH : 4000 for each channel
- qqqqqq (non tt compatible) : 4000 each
 bbbbqq: 10000 each
- QQH (Q only b or c): 500 fb⁻¹
- qqqqlv (semileptonic tt) : 500 fb⁻¹
- ttX (X = H,Z,bb): 10000 each

- The reconstructed jets are paired to the Monte Carlo quarks using the combination that maximizes the sum of the six scalar products
- All jets are divided in bins of energy, for each bin the resolution is evaluated

Michele Faucci Giannelli, Tsukuba, TILC09

E

 Using the same pairing, it is possible to reconstruct the bosons using the correct jets

Analysis

 A first loose cut on total b tagging was applied to reduce the number of events to process.

Analysis

- Several variables were used in the analysis:
 - Thurst
 - Second Fox-Wolfram moment
 - Total energy
 - Y6 (angular distance between jets)
 - # tracks
 - # particle in jets
 - EM energy ratio in jets
- The cuts were optimized using a multi dimensional method.
 - All variables varied simultaneously within a range, best set of cuts determined by maximizing the figure of merit S/ $\sqrt{(S+B)}$
- After cuts $S/\sqrt{(S+B)} = 0.36$

Some distributions

Michele Faucci Giannelli, Tsukuba, TILC09

Some distributions (2)

E

Calorimeter for ILC

Final optimization

- B tagging is used together with the masses
- Two cases:
 - if Z→bb:
 - b tagging cannot be used to separate Z jets from Higgs jets
 - if Z→no bb:
 - four most b-like jets are associated with Higgs
- The total B tagging value at which the two cases are separated was one of the parameters of the final optimization
 - Same procedure as before

Parameters used in final optimization:

- Total B tagging
- Threshold value for $Z \rightarrow bb$

•
$$\chi^2 = \frac{\left(M_{12} - M_Z\right)^2}{\sigma_Z^2} + \frac{\left(M_{34} - M_H\right)^2}{\sigma_H^2} + \frac{\left(M_{56} - M_H\right)^2}{\sigma_H^2}$$

with combinatorial reduced depending on the value of Total B tagging and threshold

Example:

- Total b tagging = 4.1 and threshold = 4.0

 \rightarrow all combination were used

- Total b tagging = 4.1 and threshold = 4.2

 \rightarrow combination were reduced to reconstruct the Higgs

Result

The optimization gave these values:

- Total b tag > 3.8
- Threshold for $Z \rightarrow bb$ at 4.2
- χ below threshold < 7
- χ above threshold: no cut

The large combinatorial for the χ above threshold causes a large fraction of the background to look like ZHH events hence the mass information is not useful in that case

- The resolution to the ZHH cross section, defined as √(S+B) /S, is 88% for an integrated luminosity of 500 fb⁻¹
- The same analysis was performed on the two sets of fully polarized files, with the two independent analysis combined at the end. The same result was obtained.
- Considering an integrated luminosity of 2 ab⁻¹, as done in all previous fast simulation studies, a resolution of 44% could be achieved on the ZHH cross section.

B tagging

Fake rate for light jets is reduced respect old model but is not yet at the level of Z pole. There is still room for improvement.

- An LC note is available with more details
- The resolution to ZHH cross section is 88%
- This value is close the resolution obtained from fast simulation studies (scaling to same integrated luminosity)
- If better vertex reconstruction could be achieved, possibly with a better jet finder, measuring the Higgs self-coupling should be possible with an integrated luminosity of 2 ab⁻¹ and using more decay modes of ZHH.

Backup Slides

B tagging

Studies and improvements needed on b-tagging algorithms as a function of: •number of jets •jet energy