e-cloud studies at LNF

T. Demma INFN-LNF

Plan of talk

- Introduction
- ECLOUD Simulations for the DAFNE wiggler
- ECLOUD Simulations for build up in presence of solenoidal field
- New feedback system to suppress horizontal coupled-bunch instability.
- Preliminary analysis of the instabilities
- Conclusions

Electron cloud at DAFNE

- e⁺ current limited to 1.2 A by strong horizontal instability
- Large positive tune shift with current in e⁺ ring, not seen in e⁻ ring
- Instability depends on bunch current
- Instability strongly increases along the train
- Anomalous vacuum pressure rise has been oserved in e⁺ ring
- Instability sensitive to orbit in wiggler and bending magnets
- Main change for the 2003 was wiggler field modification

Wiggler vacuum chamber

A. Chimenti et Al., Proc. Of PAC 93

Wiggler vacuum chamber cross section

Wiggler beam chamber detail

- Al alloy 5083-H321 chamber (120 mm x 20 mm)
- 10 mm slots divide the beam channel from the antechambers where absorbers and pumping stations are located
- 95% of photon flux is intercepted in the antechambers

Wiggler magnetic field model in ECLOUD simulations

M. Preger, DAFNE Tech. Note L-34; C.Vaccarezza, PAC05, p.779 magnetic field (Bx, By, Bz) inside the wiggler as a function of x,y,z coordinates is obtained from a bi-cubic fit of the measured 2-D field-map data By (x,y=0,z); field components Bx and Bz are

$$\begin{split} B_x &= \frac{\partial B_y \left(x, y = 0, z \right)}{\partial x} y \\ B_z &= \frac{\partial B_y \left(x, y = 0, z \right)}{\partial z} y \\ B_y \left(x, y, z \right) &= B_y \left(x, y = 0, z \right) - \frac{y^2}{2} \left(\frac{\partial^2 B_y \left(x, y = 0, z \right)}{\partial x^2} + \frac{\partial^2 B_y \left(x, y = 0, z \right)}{\partial z^2} \right) \end{split}$$

consistent with Maxwell's equations: $\nabla \times \vec{B} = 0$, $\nabla \cdot \vec{B} = 0$

approximated by

Wiggler magnetic field

Input parameters for ECLOUD (DAFNE Wiggler 2003)

Bunch population	N _b	2.1x10 ¹⁰
Number of bunches	n_b	100;50;33;25
Missing bunches	N _{gap}	20
Bunch spacing	L _{sep} [m]	0.8;1.6;2.4;3.2
Bunch length	σ_{z} [mm]	18
Bunch horizontal size	σ_{x} [mm]	1.4
Bunch vertical size	σ_{y} [mm]	0.05
Chamber hor. aperture	2 h _x [mm]	120
Chamber vert. aperture	2 h _y [mm]	10
Al Photoelectron Yield*	Y _{eff}	0.2
Primary electron rate	dλ/ds	0.0088
Photon Reflectivity*	R	50%
Max. Secondary Emission Yeld	δ_{max}	1.9 (0.2) 1.1
Energy at Max. SEY	E _m [eV]	250
SEY model	Cimino-Collins (50%;100% refl.)	

^{*} As measured on Al sampels with same finishing of the actual vacuum camber N.Mahne et Al., PAC'05

Bunch patterns

 $N_b = 2.1 \ 10^{10}$

100 bunches

$$L_{sep}$$
= 0.8 m

50 bunches

$$L_{sep}$$
= 1.6 m

33 bunches

$$L_{sep}$$
= 2.4 m

25 bunches

$$L_{sep}$$
= 3.2 m

Magnetic field models

100 bunches, L_{sep} = 0.8 m, N_b =2.1 10¹⁰

2003 wiggler 2002 wiggler 2007 wiggler (proposed)

Solenoids Installation

- At the startup after the recent shutdown for the setup of the crab waist collision scheme the instability threshold dropped to 270mA for the positron current (feedback switched off).
- Main change was the installation of new interaction regions (20 m straight sections of alluminum SEY>2)
- In the attempt to find a remedy solenoids were installed in the field free regions of DAFNE, leading to an increase of the threshold to 400mA (feedback switched off).

Solenoids-

Multipacting Suppression

Photoelecrons are produced only during the passage of the first 10 bunches.

x-y Phase-Space Snapshot

Effects of Solenoids on Vacuum Pressure Rise

(100f,20e)

Lsep=0.8 m

Bz= 40 G

Sol. Off/Sol. On

Vacuum pressure read-out vs. total current as recorded in a straight section of the positron ring where a 40 G solenoidal field was turned on (blue dots) and off (red dots).

New DAFNE e⁺ Transverse feedback

- Observing the linearity of the horizontal instability, growing > 70 (1/ms) for lbeam>800mA
- We decide to double the feedback power from 500W to 1kW.
- We decide to test another pickup (to see if less noisy) and to use the spare striplines of the injection kickers.

Grow rates at higher e+ current controlling instability by 2 feedback

Characterization of the Horizontal Instability

e+ instability grow rates by halving βx in the RF cavity

- OPTICS for collision (blue)
- βx 4 [m] -> 2 [m] in the RF cavity (red)
- v + x = 6.096,
- $v+_v = 5.182$
- Δν+_x between the Wigglers unchanged

Conclusion: the instability does not depend on hypothetical high order mode in the e+ RF cavity

- the horizontal instability rise time cannot be explained only by the beam interaction with parasitic HOM or resistive walls
- Solenoids installed in free field regions strongly reduce pressure but have no effect on the instability
- Instability sensitive to orbit in wiggler and bending magnets

e+ instability grow rates versus orbit in the main ring dipoles

The orbit variation is performed changing the RF frequency and then compensating the beam energy

e+ instability behavior switching solenoids off (blue) & on (red)

• Switching off the solenoids installed in the positron ring the grow rates of the e+ instability does not change

PEI-M Tracking simulation

K.Ohmi, PRE55,7550 (1997), K.Ohmi, PAC97, pp1667.

- •Solve both equations of beam and electrons simultaneously, giving the transverse amplitude of each bunch as a function of time.
- Fourier transformation of the amplitudes gives a spectrum of the unstable mode, identified by peaks of the betatron sidebands.

Input parameters for DAFNE simulations

Bunch population	N _b	2.1; 4.2 x10 ¹⁰
Number of bunches	n _b	120; 60
Missing bunches	N_{gap}	0
Bunch spacing	L _{sep} [m]	0.8;1.6
Bunch length	σ_{z} [mm]	18
Bunch horizontal size	σ_{x} [mm]	1.4
Bunch vertical size	σ_{y} [mm]	0.05
Chamber Radius	R [mm]	40
Hor./vert. beta function	$\beta_{x}[m]/\beta_{y}[m]$	4.1/1.1
Hor./vert. betatron tune	v_{x}/v_{y}	5.1/5.17
Primary electron rate	dλ/ds	0.0088
Photon Reflectivity	R	100% (uniform)
Max. Secondary Emission Yeld	Δ_{max}	1.9
Energy at Max. SEY	E _m [eV]	250
Vert. magnetic field	B _z [T]	1.7

Bunch train evolution

1.2 A in 60 equispaced bunches

Mode spectrum and growth rate

50

Mode spectrum and growth rate -1 mode (120-5-1=154)

120 equispaced bunches Beam current 1.2 A Growth time ~ 100 turn

Simulations vs measurments

Measurment		Simulation	
I[mA]/nb	τ/Τ ₀	I[mA]/nb	τ/T ₀
1000/105	73	1200/120	100
750/105	56	900/120	95
500/105	100	600/120	130

Summary

- •ECLOUD build-up simulations for the DAFNE Wiggler show:
 - no dependence of e-cloud build-up on magnetic field model
- Solenoids were installed at DAFNE, preliminary observation seems to confirm their effectiveness in reducing e-cloud build-up
- •Two separate feedback systems for the same oscillation plane work in perfect collaboration doubling the damping time, keeping I+ MAX as higher as possible
- Coupled-bunch instability has been simulated using PEI-M for the DAFNE parameters
- Preliminary results are in qualitative agreement with grow-damp measurments