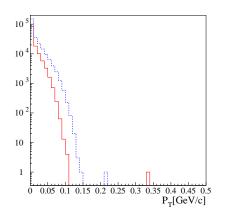
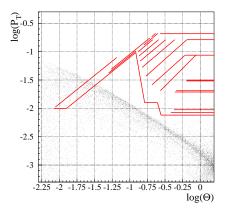
Study of $\tilde{\tau}$ pair production in SPS1a in the precsence of beam-background'

Mikael Berggren¹

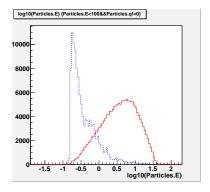

¹DESY, Hamburg

ILD meeting, Tsukuba, April 2009

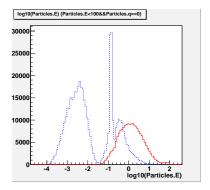
- Generate 1000 bunch-crossings with GuineaPig (Tony Hartin).
- Signal:
 - For each generated event, pick one bunch crossing at random, and add the beam-strahlung pairs (125 000...) to it.
 - Run through Full Simimualtion and Reconstruction (Katarzyna Wichmann).
- Background:
 - Add simulated and reconstructed beam-background only events on beam-background free, fully simulated and reconstructed physics events → under-estimate pattern rec. problems.
 - Technically: Use two DST-in-a-TTree root-files. Pick at random an event from back-ground tree, add it's collections to the physics event, then go on with analysis.

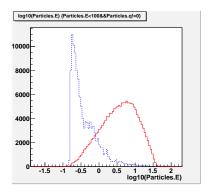

2/6

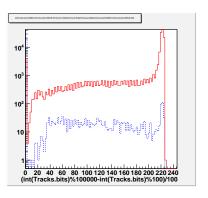
- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes
- Reject by : E > 500MeV
- ... and demand associated TPC hits for charged.



3/6

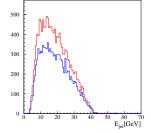

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes
- Reject by : E > 500MeV
- ... and demand associated TPC hits for charged.


- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : E > 500MeV
- ... and demand associated TPC hits for charged.


- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : E > 500MeV
- ... and demand associated TPC hits for charged.

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

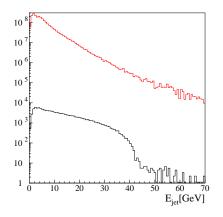

3/6

Modifications needed to still find τ :s

- Standard Satoru jet-finder suffers badly from the added tracks.
 - → Change to DELPHI tau-finder.

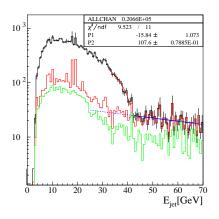
Performs better than Durham forced to two jets already without

background:



BLUE: Durham, RED: DELPHI: 50 % gain.

• Problem: slightly more $\gamma\gamma$ background: Need to add event-level cuts.



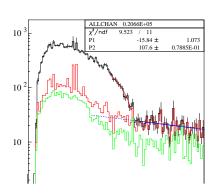
- Pre-select
- Only the upper end-point is relevant.
- Do selection
- Region above 45 GeV is signa free. Fit exponential.
- Fit line to (data-background fit extrapolation)
- Same, without beam-background.

5/6

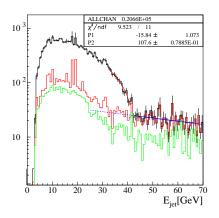
- Pre-select
- Only the upper end-point is relevant.
- Do selection
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation)
- Same, without beam-background.

5/6

- Pre-select
- Only the upper end-point is relevant.
- Do selection
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation)

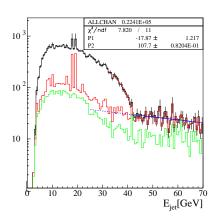

Same without

Efficiency 11.2 %.


$$M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \,\mathrm{GeV}/c^2$$

Without beam-background: Efficiency 11.8 % (+5%), but: background +15% (the background is two τ :s!)

 $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \,\mathrm{GeV}/c^2.$

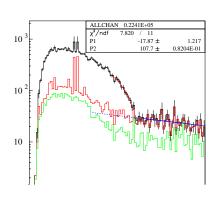


- Pre-select
- Only the upper end-point is relevant.
- Do selection
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation)
- Same, without beam-background.

5/6

- Pre-select
- Only the upper end-point is relevant.
- Do selection
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation)
- Same, without beam-background.

- Pre-select
- Only the upper end-point is relevant
- Do selection
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation)
- Same without


Efficiency 11.2 %.

$$M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \,\mathrm{GeV}/c^2$$

Without beam-background: Efficiency 11.8 % (+5%), but: backround

+15% (the background is two τ :s!)

 $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \,\mathrm{GeV}/c^2$.

Summary and outlook

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included. .
- $\bullet \ \Delta(\textit{M}_{\tilde{\tau}_1}) = 80 \ \mathrm{MeV}/\textit{c}^2 \oplus 1.3\Delta(\textit{M}_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

Full account: Talk in session ACFA: Physics, Monday, 11:00 -> 12:40

(http://ilcagenda.linearcollider.org/getFile.py/access?contribId=238&sessionId=18 &resId=0&materialId=slides&confId=3154)

BACKUP SLIDES

Introduction

What can be done if SUSY exists, and is "next to LEP", and we use a real detector?

- Study SPS1a'
- Weak-scale parameters with SPheno
- Whizard for event simulation (Produced at DESY)
- GuineaPig for beam-background
- DESY mass-production for both SUSY and SM:
 - Full simulation: ILD_00 in Mokka
 - Reconstruction using Marlin
- Study τ channels

People involved

- Olga Stempel, Peter Schade.
- Supervisors: J. List, P. Bechtle, M.B.

SPS1a'

Pure mSUGRA model:

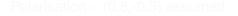
$$M_{1/2} = 250 \; GeV, M_0 = 70 \; GeV, A_0 = -300 \; GeV, \\ \tan \beta = 10, sign(\mu) = +1$$

Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \to \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1}=107.9~{\rm GeV}/c^2, M_{\tilde{\chi}_1^0}=97.7~{\rm GeV}/c^2,$ so $\Delta(M)=10.2~{\rm GeV}/c^2.$
- $P_{\tilde{\tau},min} = 2.2 \text{ GeV}/c$, $P_{\tilde{\tau},max} = 42.8 \text{ GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states Off-diagonal term of mass-matrix: $-M_{\tau}(A_{\tilde{\tau}} \mu \tan \beta)$.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

Polarisation = (0.8, -0.3) assumed



- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}/c^2, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, so $\Delta(M) = 10.2 \text{ GeV}/c^2$.
- $P_{\widetilde{\tau}, min} = 2.2~{
 m GeV}/c, P_{\widetilde{\tau}, max} = 42.8~{
 m GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states Off-diagonal term of mass-matrix: $-M_{\tau}(A_{\tilde{\tau}} \mu \tan \beta)$.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

Polarisation = (0.8, -0.3) assumed

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1}=107.9~{\rm GeV}/c^2, M_{\tilde{\chi}_1^0}=97.7~{\rm GeV}/c^2,$ so $\Delta(M)=10.2~{\rm GeV}/c^2.$
- $P_{\tilde{\tau},min} = 2.2 \text{ GeV}/c$, $P_{\tilde{\tau},max} = 42.8 \text{ GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states Off-diagonal term of mass-matrix: $-M_{\tau}(A_{\tilde{\tau}} \mu \tan \beta)$.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1}=107.9~{\rm GeV}/c^2, M_{\tilde{\chi}_1^0}=97.7~{\rm GeV}/c^2,$ so $\Delta(M)=10.2~{\rm GeV}/c^2.$
- $P_{\widetilde{\tau}, min} = 2.2~{
 m GeV}/c, P_{\widetilde{\tau}, max} = 42.8~{
 m GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states Off-diagonal term of mass-matrix: $-M_{\tau}(A_{\tilde{\tau}} \mu \tan \beta)$.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

Polarisation = (0.8, -0.3) assumed.

Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}_1}$ from $M_{\tilde{\chi}_1^0}$ and end-point of spectrum = $P_{\tau,max}$.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau, min}$, but hidden in $\gamma\gamma$ background.

Need to measure end-point of spectrum

Must get $M_{\tilde{\chi}_1^0}$ from other sources. $\Delta(M_{\tilde{\chi}_1^0}) \approx 1~{\rm GeV}/c^2$ from the $\tilde{\mu}_{\rm L}$ analysis - the only studied by ILD up to now. This error would \approx half, once all $\tilde{\mu}$ and $\tilde{\rm e}$ channels are used

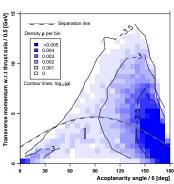
Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}_1}$ from $M_{\tilde{\chi}_1^0}$ and end-point of spectrum = $P_{\tau,max}$.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau,min}$, but hidden in $\gamma\gamma$ background.

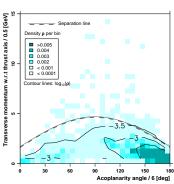
Need to measure end-point of spectrum.

Must get $M_{\tilde{\chi}_1^0}$ from other sources. $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{ GeV}/c^2$ from the $\tilde{\mu}_L$ analysis - the only studied by ILD up to now.


This error would \approx half, once all $\tilde{\mu}$ and $\tilde{\mathrm{e}}$ channels are used

$\Delta(\textit{M}) = 10.2~{\rm GeV}/\textit{c}^2 \rightarrow \gamma \gamma$ background ...

- Correlated cut in ρ and θ_{acop} : $\rho > 3 \sin \theta_{acop} + 1.7$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

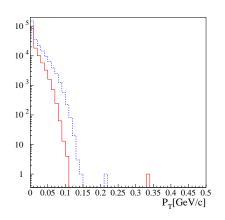

 $\Delta(\textit{M}) = 10.2~{
m GeV}/\emph{c}^2 \rightarrow \gamma \gamma$ background ...

- Correlated cut in ρ and θ_{acop} : $\rho > 3 \sin \theta_{acop} + 1.7$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

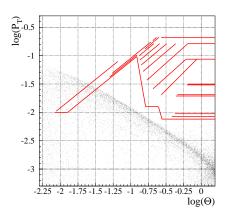
$$\Delta(\textit{M}) = 10.2~{
m GeV}/\emph{c}^2 \rightarrow \gamma \gamma$$
 background ...

- Correlated cut in ρ and θ_{acop} : $\rho > 3 \sin \theta_{acop} + 1.7$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

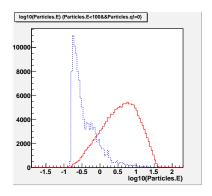
$$\Delta(\textit{M}) = 10.2~{\rm GeV}/\textit{c}^2 \rightarrow \gamma \gamma$$
 background ...

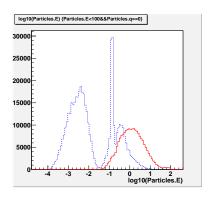

- Correlated cut in ρ and θ_{acop} : $\rho > 3 \sin \theta_{acop} + 1.7$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

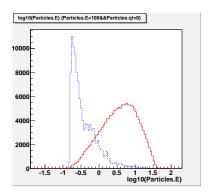
$$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background ...}$$


- Correlated cut in ρ and θ_{acop} : $\rho > 3 \sin \theta_{acop} + 1.7$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

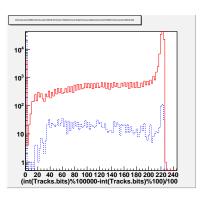
- Generate 1000 bunch-crossings with GuineaPig.
- Signal:
 - For each generated event, pick one bunch crossing at random, and add the beam-strahlung pairs (125 000...) to it.
 - Run through Full Simimualtion and Reconstruction.
- Background:
 - Add simulated and reconstructed beam-background only events on beam-background free, fully simulated and reconstructed physics events → under-estimate pattern rec. problems.


- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes
- Reject by : E > 500MeV
- ... and demand associated TPC hits for charged.


- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.


- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : E > 500MeV
- ... and demand associated TPC hits for charged.

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.



- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

Beam-background

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s

Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- ③ If more than one possible, use the one with lowest ΣM .
- End when no smaller number of groups possible
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s

Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- 6 End when no smaller number of groups possible
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s

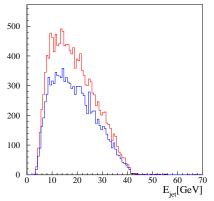
Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- **1** If more than one possible, use the one with lowest ΣM .
- 4 End when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

In particular in the presence of beam-background, general jet-finders perform poorly when used to find $\tau\textsc{:s}$

Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- 4 End when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- **1** If the lowest mass is $> 2~{\rm GeV}/c^2$, leave the neutral to the "Rest-of-event" group


In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s

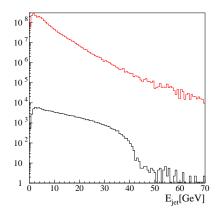
Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- **1** If more than one possible, use the one with lowest ΣM .
- End when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- $\ \, \mbox{ If the lowest mass is} > 2~\mbox{GeV}/c^2,$ leave the neutral to the "Rest-of-event" group

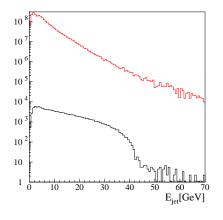
Performs better than Durham forced to two jets already without background:

BLUE: Durham, RED: DELPHI

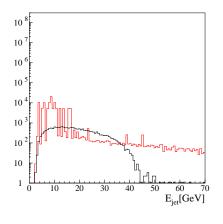
Extract the signal.


- Exactly two jets.
- Charge of each jet = ± 1 ,
- $E_{within 30^{\text{deg}}}$ to beam < 4 GeV
- $M_{vis} > 20 \text{ GeV}/c^2$,
- anti- $\gamma\gamma$ cut.
- $E_{vis} < 120 \text{ GeV}$,
- Two jets with charge \pm 1,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $\cos \theta_{acop} < -0.2$,
- $|\cos\theta_{missing\ p}| < 0.75$,

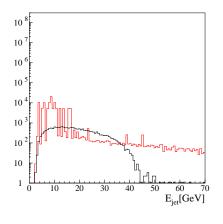
Efficiency 11.2 %.


Extract the signal.

- Exactly two jets.
- Charge of each jet = ± 1 ,
- $E_{within 30^{\text{deg}}}$ to beam < 4 GeV
- $M_{\rm vis} > 20 {\rm ~GeV}/c^2$,
- anti- $\gamma\gamma$ cut,
- $E_{vis} < 120 \text{ GeV}$,
- Two jets with charge \pm 1,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $\cos \theta_{acop} < -0.2$,
- $|\cos \theta_{missing p}| < 0.75$,

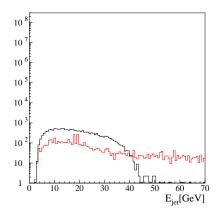

Efficiency 11.2 %.

- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - E_{within 30^{deg} to beam < 4 GeV}
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV}$,
 - ullet Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

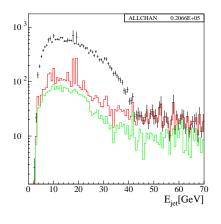

Efficiency 11.2 %.

- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - $E_{within 30^{\text{deg}} to beam} < 4 \text{ GeV}$
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - E_{vis} < 120 GeV,
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{\textit{missing p}}| < 0.75$,

Efficiency 11.2 %.

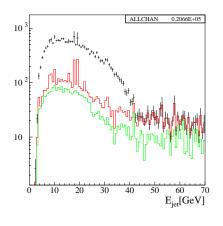

- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - E_{within 30^{deg} to beam < 4 GeV}
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - E_{vis} < 120 GeV,
 - ullet Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{\textit{missing p}}| < 0.75$,

Efficiency 11.2 %.

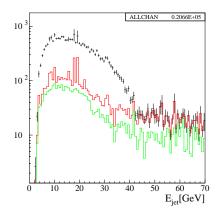


- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - E_{within 30^{deg} to beam < 4 GeV}
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - E_{vis} < 120 GeV,
 - ullet Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{\textit{missing p}}| < 0.75$,

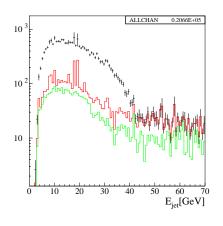
Efficiency 11.2 %.


- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - E_{within 30^{deg} to beam < 4 GeV}
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - E_{vis} < 120 GeV,
 - ullet Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{\textit{missing p}}| < 0.75$,

Efficiency 11.2 %

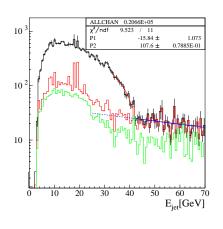

- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - $E_{within 30^{\text{deg}} to beam} < 4 \text{ GeV}$
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - E_{vis} < 120 GeV,
 - ullet Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{\textit{missing p}}| < 0.75$,

Efficiency 11.2 %.


- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - E_{within 30^{deg} to beam < 4 GeV}
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - E_{vis} < 120 GeV,
 - ullet Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{\textit{missing p}}| < 0.75$,

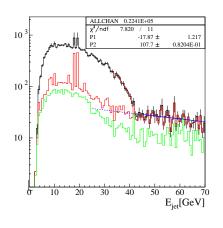
Efficiency 11.2 %.

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.


 $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \text{ GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \text{ GeV}/c^2$.

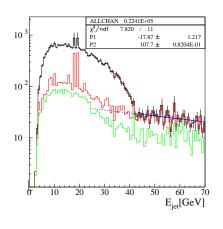
NB: $dM_{ ilde{ au}}/dM_{ ilde{\chi}_1^0}pprox$ 1.3, and $\Delta(M_{ ilde{\chi}_1^0})pprox$ 1GeV/ c^2 from the $ilde{\mu}_{
m L}$ analysis, so the error from $M_{ ilde{ au}^0}$ largely dominates.

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.


 $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \text{ GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \text{ GeV}/c^2$.

NB: $dM_{ ilde{ au}}/dM_{ ilde{\chi}_1^0}pprox$ 1.3, and $\Delta(M_{ ilde{\chi}_1^0})pprox$ 1GeV/ c^2 from the $ilde{\mu}_{
m L}$ analysis, so the error from $M_{ ilde{ au}^0}$ largely dominates.

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.


 $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \, \text{GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \, \text{GeV}/c^2$.

NB: $dM_{\tilde{\tau}}/dM_{\tilde{\chi}_1^0} \approx 1.3$, and $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{GeV}/c^2$ from the $\tilde{\mu}_L$ analysis, so the error from $M_{\tilde{\tau}_1^0}$ largely dominates.

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.

 $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \, \text{GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \, \text{GeV}/c^2$.

NB: $dM_{\tilde{\tau}}/dM_{\tilde{\chi}_1^0} \approx 1.3$, and $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 {\rm GeV}/c^2$ from the $\tilde{\mu}_{\rm L}$ analysis, so the error from $M_{\tilde{\chi}_1^0}$ largely dominates.

- All background SUSY and SM included.
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

- All background SUSY and SM included.
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

- All background SUSY and SM included.
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

- All background SUSY and SM included.
- Beam-background included. .
- $\Phi \ \Delta(\textit{M}_{\widetilde{\tau}_1}) = 80 \ \mathrm{MeV}/\textit{c}^2 \oplus 1.3\Delta(\textit{M}_{\widetilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

- All background SUSY and SM included.
- Beam-background included. .
- $\bullet \ \Delta(\textit{M}_{\tilde{\tau}_1}) = 80 \ \mathrm{MeV}/\textit{c}^2 \oplus 1.3\Delta(\textit{M}_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.