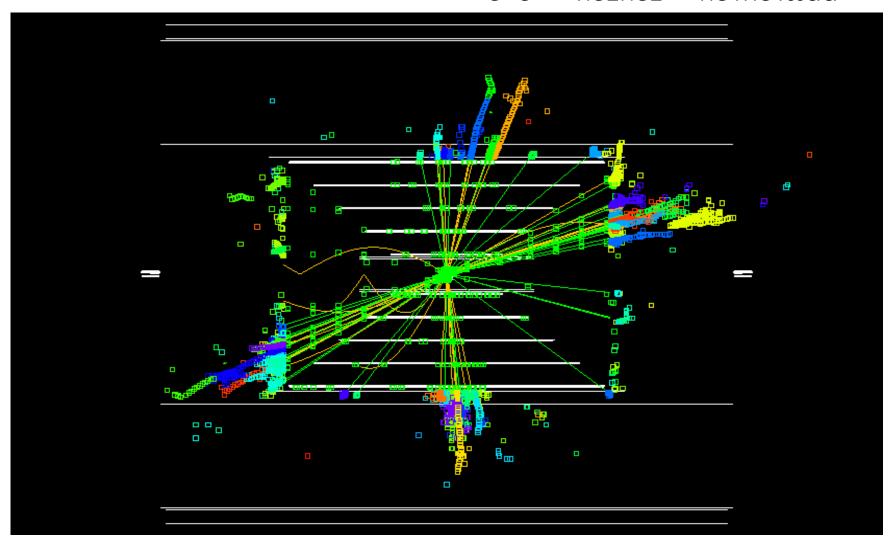
SUSY Benchmarking Analyses with SiD

Yiming Li, Tomas Lastovicka, Andrei Nomerotski (University of Oxford)
TILC09, Tsukuba, 18 April 2009

Outline

- Chargino/neutralino masses
 - Signal selection
 - Kinematic fitting
 - Mass measurement
- Cosmology motivated sbottom production
 - B-tagging
 - Results


Introduction

Physics process: (SUSY point 5 in ILC benchmarks)

parameter	value
m_0	206 GeV
$m_{1/2}$	293 GeV
$\tan \beta$	10
A	0
μ	375 GeV
$M_{\tilde{\chi}_1^0}$	$115.7 \mathrm{GeV}$
$M_{\tilde{\chi}_{\pm}^{\pm}}^{^{1}}$	$216.5~\mathrm{GeV}$
$M_{\sim 0}^{\lambda_1}$	$216.7~\mathrm{GeV}$

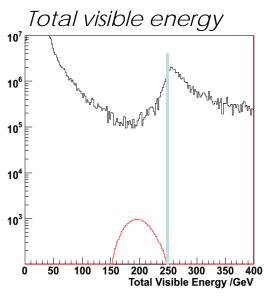
- $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ dominantly decay into on-shell W/Z
- Cross-section not too small
 - $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ ~ 100 fb
 - $\tilde{\chi}_{2}^{0} \, \tilde{\chi}_{2}^{0} \sim 10 \text{ fb}$
- The gauge boson energy depends on the parent and LSP mass
- Signature: 4 jets (from 2 acoplanar W/Z) + missing energy
 - WW/ZZ separation: good PFA performance required

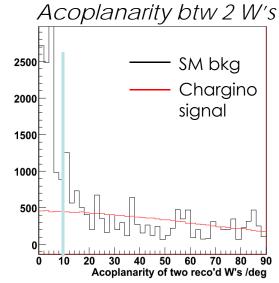
e+e--> ne2ne2 -> ne1ne1ssdd

Samples

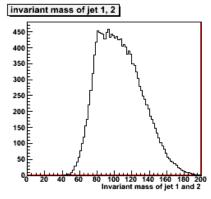
SUSY samples:

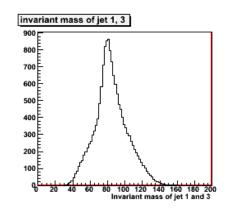
- $-\sqrt{s}$ = 500 GeV; 500 fb⁻¹ luminosity; ~ 1.2M events /sample
- Polarization: 80% e- L, 30% e+ R
- SUSY Backgrounds: e+e- -> ne1ne2, slepton pair production

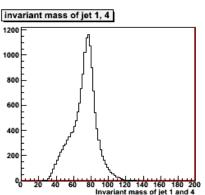

sample	$m_{\tilde{\chi}_1^0} \; (\mathrm{GeV})$	$m_{\tilde{\chi}_1^{\pm}} \; (\text{GeV})$	$m_{\tilde{\chi}_2^0} \; (\mathrm{GeV})$
Template	115.7	216.7	216.5
neu1 + 0.5	117.2	216.7	216.5
ch + 0.5	115.7	217.2	216.5
ch + 0.5	115.7	216.7	217.0

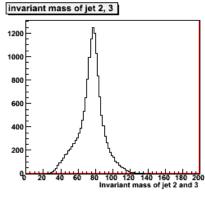

Signal selection

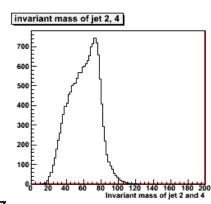
cut	value
E_{jet}	$> 10~{ m GeV}$
Fraction of EM energy in each jet	< 80%
Number of tracks	> 20
Total visible energy	$< 250~{ m GeV}$
Thrust	< 0.85
$\cos heta_{thrust}$	< 0.9
$\theta(1, 2)$	$> 60^{\circ}$
$\theta(1, 3), \theta(1, 4), \theta(1, 3)$	$>40^{\circ}$
$\theta(2, 4), \theta(3, 4)$	$> 20^{\circ}$
Acoplanarity of two reconstructed gauge bosons	$> 10^{\circ}$

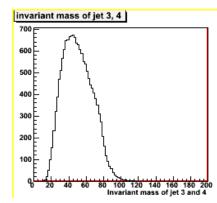

Before Chargino/Neutralino separation:

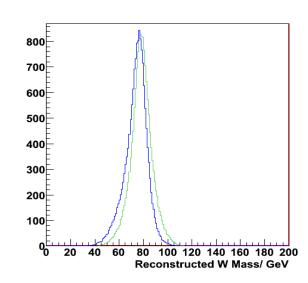

	•	Neutralino all- hadronic signal	SM background
Efficiency	60.1%	59.3%	0.0004%
Composition	36.7%	6.9%	53.5%





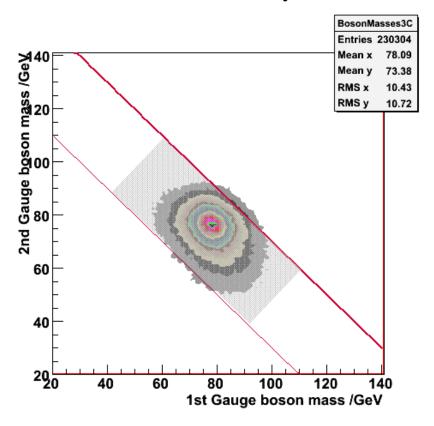

W/Z Reconstruction – Jet pairing




- Chargino/Neutralino signal separation is based on the two reconstructed boson mass: W or Z
- Need to pair jets correctly
- Jet pairing optimization: Choose the combination minimizing:

$$(m_{i,k} - m_w)^2 + (m_{i,n} - m_w)^2$$

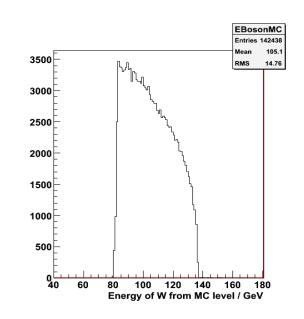
Green: Reco'd mass of 1st W


Blue: Reco'd mass of 2nd W



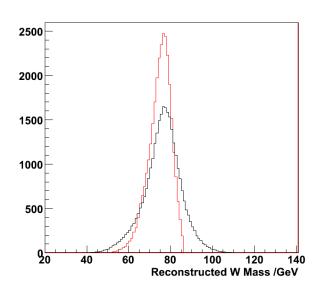
Chargino/ Neutralino Separation

Correlation of two di-jet masses is a powerful selection criteria

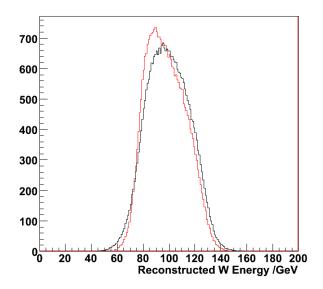


Chargino events signal
130 GeV < M(W1) + M (W2) < 172 GeV

Chargino/Neutralino mass – strategy


- When C1(N2) -> N1 + W(Z), in C1 rest frame, the W is monochromatic $E_W = \frac{|(m_{chi}^2 + m_W^2 m_{neu}^2)|}{2m_{obs}}$
- In lab frame the W is boosted but E_W still depends on the mass of chargino and neutralino.

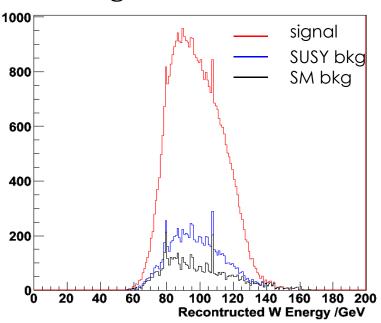
 We can extract the chargino/neutralino mass by comparing the W/Z energy spectrum to the template.



Kinematic fitting

- Kinematic fitting with one constraint (Mboson1 = Mboson2) improves the boson energy resolution
 - Used KinFit in Marlinreco package (J.List et al)
 - − Jet resolutions: $\delta E = 50\%/\sqrt{E}$; $\delta \theta$, $\delta \phi = 0.1$ rad

Reco'd W mass

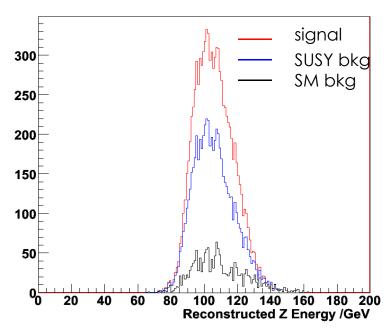

Reco'd W energy

Chargino selection:

Before/ After Kinfit

Result – boson energy spectrum

Chargino selection:

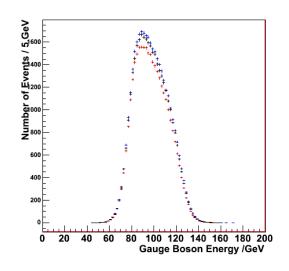


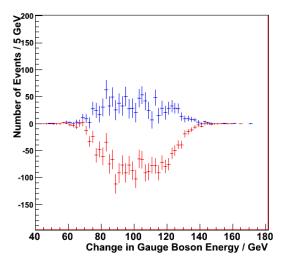
Purity: 75.3%

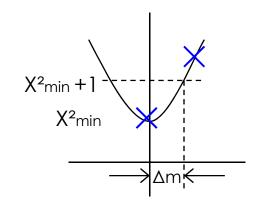
Efficieny: 53.8%

Xsection error: 0.9%

Neutralino selection:



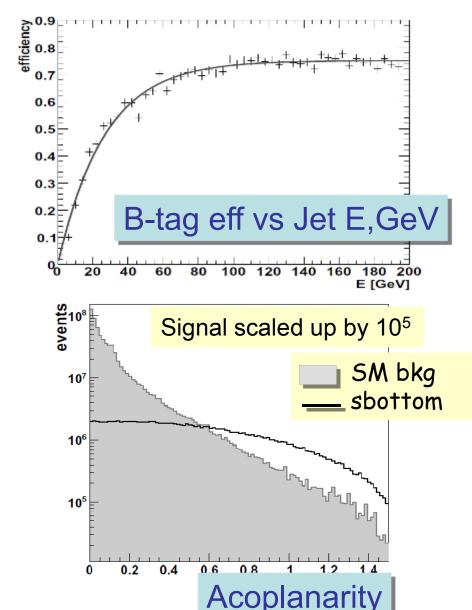

Purity: 33.7%


Efficieny: 30.2%

Xsection error: 4.2%

Result – mass uncertainty

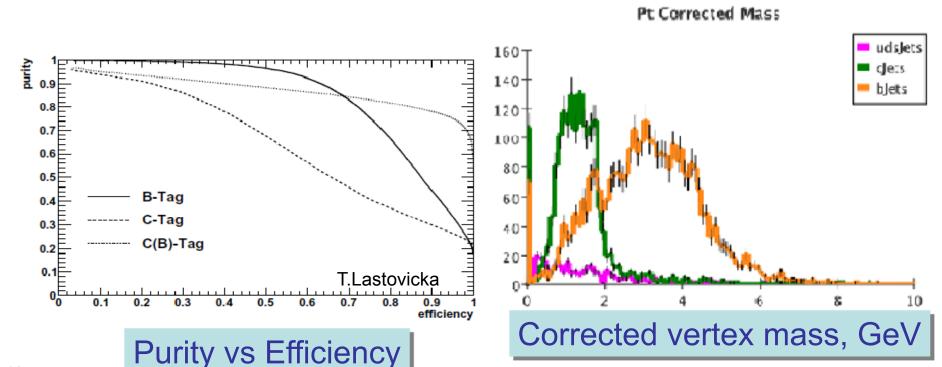
Blue: chargino+0.5, red: neu1+0.5


Chargino signal templates (SM bkg not included)

$$\chi_1^2 = \sum_{i=0}^{Nbins} \frac{(y_{template1,i} - y_{data,i} + \delta_i)^2}{\sigma_{template1,i}^2 + \sigma_{data,i}^2 + \sigma_{SM,i}^2}$$

Chargino selection		Neutralino s	Neutralino selection	
Chargino	95 MeV	Neu2	369 MeV	
Neu1	54 MeV	Neu1	102 MeV	
		(Chargino	395 MeV)	

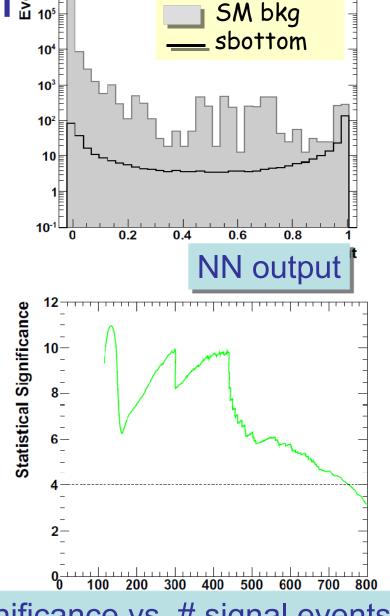
Sbottom Production


- Cosmology motivated SUSY predicts small mass split between LSP and NLSP
 - Small visible energy in the detector
 - Assume NLSP is sbottom
 - Two b-jets + MET
 - Jet clustering and b-tagging are challenging for low energy jets
- Huge jjγγ and jjγ backgrounds
 - Need to use forward calorimeter for rejection

A.Nomerotski

LCFI b-tagging

- Vertexing: LCFI package
 - NN based on flavour discriminants
 - Re-optimized for SiD using 500 GeV dijets
 - Re-optimized for sbottom signal
 - Deterioration at small E recovered



Sbottom Production 5 106

- Main selections
 - Visible energy < 80 GeV
 - Number of particle
 - Forward EM veto, acceptance 10 mrad, E > 300 MeV
- Main discriminating variables combined in NN, also adding
 - Acoplanarity
 - Maximum pseudorapidity
 - $-\Delta R$
- Results
 - 15% Cross section measurement for

$$m_{\tilde{b}} = 230 \, \mathrm{GeV}$$
 and $m_{\tilde{\chi}_1^0} = 210 \, \mathrm{GeV}$

 Sensitive to sbottom-neutralino mass difference down to 10 GeV

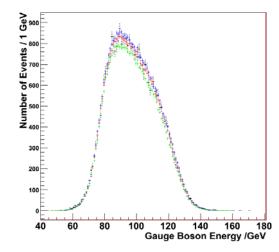
Significance vs # signal events

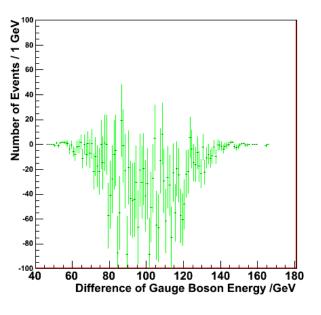
Summary

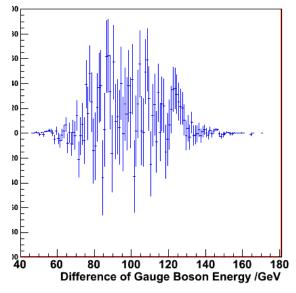
- Chargino / neutralino events can be identified and efficiently separated from each other.
- The cross section uncertainty of chargino and neutralino2 signals are 0.9% and 4.2% respectively
- Chargino1 and Neutralino2 masses can be determined with 100 MeV and 370 MeV uncertainty using the template method
- Cosmology motivated SUSY sbottom scenarios can be constrained to the sbottom-neutralino mass difference of 10 GeV

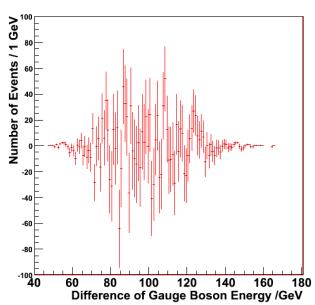
More details and references can be found at SiD Letter of Intent: http://silicondetector.org/display/SiD/LOI

Backups

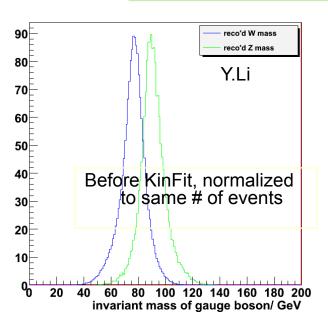


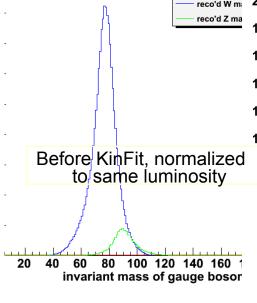

The two boson masses of all SUSY events

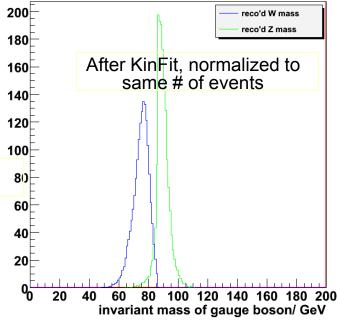

Left: chargino events selection; right: neutralino events selection


SUSY Mass Templates

- Templates have different SUSY masses
- Difference between 'Data' and templates






Di-jet Mass Resolution

- For SUSY analysis
 - σ~8 GeV before KinFit
 - σ~4 GeV after KinFit
- Physics analysis includes
 - Boson natural width
 - All quark species (light, c, b) neutrinos from c, b can worsen the resolution
 - Forward CAL
 - Effects of jet clustering (FSR, jet confusion and combinatorics). Events are forced in 4 jets.

Vector boson invariant mass for chargino and neutralino2 signals

