The ILD software framework - LDC flavor

Frank Gaede
DESY
ILD Software Workshop
KEK, Tsukuba, 16.04.2009

Outline

- Introduction
- or a brief history of ILC software
- The framework and its users
- Possible improvements the developers view
- Towards a common ILD software framework
- Summary/Outlook

LCIO introduced at CHEP- 2003

- idea for LCIO from ECFA –persistency task force
- started as DESY-SLAC common project in 2002 to
- provide data model and persistency to international ILC detector R&D community
- provide basis for collaboration and safe manpower

ILC Simulation Frameworks - 2005

- Geant4, StdHep and LCIO are common feature
- Each trying to be generic with different approach
 - → different ways to define geometries

A.Miyamoto @LCWS 2005

Note: 4th did not yet exist - and has not adopted LCIO since

ILC tools/frameworks (LCWS07)

	Description	Detector	Language	IO-Format	users
Simdet	fast Monte Carlo	TeslaTDR	Fortran	LCIO	LDC,SID
SGV	fast Monte Carlo	simple Geometry, flexible	Fortran	None/LCIO	LDC,SiLC
LiCToy	fast Monte Carlo	simple trk. Geometry	C++	LCIO	LDC,SiLC
Lelaps	fast Monte Carlo	SiD, flexible	C++	SIO, LCIO	SID
Mokka	full simulation – Geant4	LDC, flexible	C++	LCIO	LDC
SLIC	full simulation – Geant4	SiD, flexible	C++	LCIO	SID
Jupiter	full simulation – Geant4	GLD	C++	Root/LCIO	GLD
ILCroot	full sim. – Geant4/Flukka/g3	4"	C++	Root	4 ^{u1}
Marlin	reconstruction and analysis application framework	Flexible	C++	LCIO	LDC
org.lcsim	reconstruction framework	SiD (flexible)	Java	LCIO	SID
Jupiter-Satelites	reconstruction and analysis	GLD	C++	Root	GLD
ILCroot	reconstruction and analysis	4 th	C++	Root	4 th
LCCD	Conditions Data Toolkit	All	C++	LCIO	LDC,Calice,
GEAR	Geometry description	Flexible	C++	XML	LDC,Calice,
LCIO	Persistency and datamodel	All	Java, C++, Fortran	LCIO	LDC,SID, GLD,Calice,
JAS3/WIRED	Analysis Tool / Event Display	All	Java	xml,stdhep, eprep,LCIO,.	SID
root	Analysis Tool / Event Display	All	C++	Root	LDC,GLD,4 th

LCIO: basis for 'horizontal' collaboration

ILD frameworks interoperability 2008

Common ILD framework 2009-...

- ILD software working group (A.Miyamoto, F.G.) charged to work towards a unified ILD software framework with joined responsibilities
- LCIO is a good starting point for this as already used in both worlds
- this workshop:
 - see where we are after the LOI
 - get user feedback -> Requirements for software
 - develop ideas on how to continue
 - within ILD
 - in collaboration with other concepts/groups

The ILD software framework - LDC flavor

- Mokka (LLR)
 - geant4 simulation application
- LCIO (DESY/SLAC)
 - international standard for persistency format / event data model
- Marlin
 - core application framework for reconstruction & data analysis
- **GEAR**
 - geometry package f. reconstruction
- **LCCD**
 - conditions
 - data toolkit (DB)
- CED
 - 3d event display

framework users

>300 Mio events ~40 TB (incl.MC/processed)

- framework not only used for ILD detector optimization – also for ILC testbeams:
- CALICE
- MarlinTPC
- EUTelescope
- -> need to further fully support and maintain the tools

.04.200 Workshop, Software Gaede, Frank

Improving the software framework

- the Mokka/Marlin framework provides a lot of the need core functionality for HEP data processing
- a complete set of full reconstruction exists:
 MarlinReco, PandoraPFA, LCFIVertex
- · of course, there is always room for improvements
- a number of improvements/new developments where put on hold for the LOI Monte Carlo production
- now after the LOI has been handed in might be a good time to revisit some of these ideas
- -> see next slides

Improving the geometry description

- geometry description
 - Mokka MySQL being the leading system not optimal
 - · ideally have standalone geometry system for
 - · simulation, reconstruction, analysis, event displays
 - provide interfaces with the appropriate level of detail at the various stages
 - allow for smooth transition from existing tools (e.g. extend existing GEAR interfaces)
 - unified/combined with conditions data base !?
 - request from CALICE to extend GEAR...

LCGO geometry tool - proposal

- driver based approach a la Mokka
- MySQL DB replaced by xml files

- LCGO a planned geometry toolkit (DESY/SLAC 2006)
 - based on geometry drivers written in JAVA!
 - use gcj-compiler to compile to binary & interface with C++
- issues with performance 4 times slower than C++ (2007)
- -> could look into implementing similar concept in C++
- · also investigate existing packages TGeo, VGeometry,...

Improving LCIO -> LCIOv2

- LCIO is persistency and data model separated through abstract interface
 - -> both can be developed independently!
- improving the persistency
 - I/O performance
 - direct acces
 - splitting&merging files
 - allow for simple streaming of user defined classes (testbeam hardware)
 - evaluate using ROOT-I/O

- improving the data model:
 - allow multiple fits for Tracks
 - provide specializedTrackerHits, e.g. for strips
 - improved relations !?
 - learn from JSF data model...
 - user feedback needed!

time to abandon F77 interface?

ROOT: to use it or not to use it?

- decision to not use ROOT for ILC software in meeting at CERN (~2000 ?)
 - based on status of ROOT at the time
 - now with all LHC experiments using ROOT it might be time to revise that decision
- possible integration/usage of ROOT
 - for I/O: using ROOT I/O in LCIO
 - for histograms and trees
 - -> fast interactive user analysis (e.g.: a la JSF macros)
 - for application framework
 - details to be evaluated/studied

Testing and Validation

- testing of software tools has been left to the judgement of the developer
- ideally we should have an automated test system (run at nightly build/on cvs commits)
 - possibly unit tests?
 - integration tests
- also validation of 'physics performance':
 - · checkplots, resolutions, overlaps?,....
- -> would have saved us some work in the past

Towards a common ILD software framework

- general agreement that we want to move towards on framework – a possible roadmap:
 - create ILDsoft framework based on improved versions of LCIO, Marlin with 'goodies' from JSF framework, e.g.
 - investigate tighter coupling to ROOT
 - for user analysis (macros)
 - at I/O level user defined object serialization
 - easy network access to data unified for data, configuration, log and histograms
 - JSFEnv user parameters
 - have common ilcinstall build tool
 - work on common geometry system (mid term!?)
 - · details will have to be worked out...
 - start in this workshop

Summary & Outlook

- ILD should move towards one software framework LCIO, Marlin probably good basis together with goodies from JSF
- -> need improvements and new features, e.g.
 - geometry
 - LCIOv2 data mode and persistency
 - automated test and validation system
 - investigate usage of ROOT
 - interactive user analysis
 - persistency, geometry,.....
- -+ requirements from user communities today
- talk to other concepts & groups to seek collaboration on common software tools (TILCO9, CERN meeting,...)

additional material

Frank

The ILD software framework (LDC flavor)

LCIO: persistency & event data model

- joined DESY and SLAC project
 - first presented @ CHEP 2003
- provides persistency (I/O) and an event data model to ILD detector R&D community
- features:
 - Object I/O (w/ pointer chasing)
 - schema evolution
 - compressed records
 - hierarchical data model
 - decoupled from I/O by interfaces
 - C++, Java (and Fortran)
 - some generic user object I/O

Mokka - geant4 simulation

- flexible geant4 based application for simulating the detector response for ILC detector R&D
- developed at LLR (Ecole Polytechnique) with contributions from all detector R&D groups
- flexible geometry on subdetector basis (MySQL & C++ drivers)
- used in ILD detector concept studies
- used in ILC subdetector testbeams: Calice, LCTPC, EUPixelTelescope

ILD detector geometry in Mokka

Frank Gaede,

- Mokka allows various levels of detail when defining the detector geometry
- simple and coarse detector models for fast studies
- engineering level of detail as done for ILD_00 model:
 - get material budget right
 - qet (in)efficiencies right
 - important for estimating PFA performance

MARLIN application framework

Modular Analysis & Reconstruction for the LI Near Collider

- modular C++ application framework for ILC detector R&D
- component based
- shared library plugins
- LCIO as transient data model
- xml steering files
 - configure application @ runtime
 - processor parameters
- self documenting
- consistency check of input/output collection types

marlin::Processor
init()
processRunHeader(LCRunHeader* run)
processEvent(LCEvent* evt)
check(LCEvent* evt)
end()

GEAR geometry description

- detailed geometry for simulation with Mokka/qeant4:
 - MySQL data base with parameters
 - C++ drivers per subdetector
- at reconstruction:
 - high level abstract interface:
 - per subdetector type (Hcal,TPC,...) parameters/quantities for reconstruction
 - geometry + some navigation
 - implementation uses xml files
 - abstract interface for detailed geometry &materials:
 - point properties

Reconstruction-Analysis