
Physics Session Summary

Nobuchika Okada

Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK)

TILC09, Tsukuba, April 21, 2009

Structure of the Standard Model (SM)

Based on gauge field theory with spontaneous sym. breaking

Two pillars:

- 1. Gauge principle
 - → well established by PEWM
- 2. Symmetry breaking & mass generation
 - → Higgs sector

Untested!

Roof: New Physics beyond the SM (BSM)

Problems in the SM

- (1) gauge hierarchy problem
 - → need TeV scale BSM
- (2) WIMP dark matter

$$\Omega_{DM}h^2 \simeq 0.1 \leftarrow \text{Observation}$$

$$\sim rac{lpha}{4\pi} \left(rac{1}{1{
m TeV}}
ight)^2$$

again, TeV scale BSM!

TeV scale BSM!

Mission of Future Collider experiments

- (1) discover/confirm <u>new fundamental interactions</u> in the Standard Model (SM)
 - Higgs sector and mass generation mechanism

establish the other pillar

- (2) discover of New Physics beyond the SM and more (precise measurements)
 - → BSM at TeV scale

put the BSM roof

LHC comes first → discovery of Higgs, New particles etc.

ILC follows → <u>ILC offers more precise measurements</u>

tunable collider energy
beam polarizations
high luminosity

→ necessary to

establish the other pillar distinguish possible BSMs

Ex) calculate DM relic density by using parameters measured

Physics sessions

Physics and Benchmark (15 talks)

full simulation studies on benchmark modes with different detector concepts

→ Summarized by Suehara san

Joint session with gamma-gamma (2 talks)

THDM & SM Higgs

Physics session (9 talks)

simulation studies for non-benchmark modes more theoretical talks

→ This summary

Feasibility of ILC to establish the second pillar

Mass generation mechanism → measure Higgs coupling

Studies on Higgs self coupling & top Yukawa coupling measurements at ILC with 500 GeV $m_h = 120 \; {\rm GeV}$

"Analysis of 6-jet mode in ZHH" by Yosuke Takubo

Analysis mode: ZHH→qqHH

- > Higgs mass: 120 GeV
 - \checkmark Higgs mainly decays into bb with \sim 70% branching ratio.

➤ Integrated luminosity: 2 ab⁻¹

	qqнн	tt	tbtb	C1 10
• No cut	: 270	1167290	2154	Significance : ~3
• $\chi^2 < 20$: 219	615456	1810	Near confident obs.
• $90 < M_{H1,2} < 140 GeV$	7: 196	529501	1607	
$60 \le M_Z \le 110 GeV$				
• Nlepton=0	: 178	411467	1102	
• missing E < 70GeV	: 156	302953	816	/ Next step
• $N(HH)_{b-tag} = 4$: 20.1	475	38.7	→ Full simulation
• $N(Z)_{b-tag} = 2$: 4.3	0	0.6	

"Measurement of top-Yukawa coupling at ILC" by Ryo Yonamine

1	1-lepton + 6-jet mode				
		TTH	TTZ	TT	
	No Cut (1L+ 6-Jet)	440 (200)	710	5×10 ⁵	
	# of isolated lepton = 1	154	232	173386	
		Forced 6-Jet clustering			
	Yeut > 0.002	135	173	21577	
	4 b-tag + Mass Cut (W, t, H)	25	6	4	

Preliminary

Significance:	25	~ 4
Digilliloanice .	$\sqrt{(25+6-4)}$	1)

Nest step:

include ttg background

(which would be the main background)

"Feasibility study of Higgs pair creation in gamma-gamma collider" by Norizumi Maeda

For measuring Higgs self coupling

Higgs mass =120 GeV

Optimized photon collision E = 270 GeV

$HH o bb\overline{b}\overline{b}$ (BR=0.43)	$\gamma \gamma \to WW$	
condition	# of BG	# of Signal
nocut	10,000,000	50,000
# of jets = 4	8.09E+06	4.97E+04
# of loose b-tagged jets = 4	923	1.62E+04
# of tight b−tagged jets ≧ 3	135	1.33E+04
χ 2(H) < 18	12	1.03E+04
χ 2 (W) > 5	2	9.15E+03
maximum charged particle energy ≥ 2GeV	0	6.60E+03

16 events/year → 4.6 sigma (10 years)

Nest step: another modes

 $HH->bBWW^*(B.R.=0.18)$

Other studies on the SM

`Role of polarization in probing anomalous VVH interactions at the ILC" by Sudhansu S. Biswal

Most general couplings:

$$\Gamma_{\mu\nu} = g_V \left[\underbrace{a_V}_{M_V} g_{\mu\nu} + \underbrace{\frac{b_V}{M_V^2}}_{M_V^2} (k_\nu^1 k_\mu^2 - g_{\mu\nu} k^1 . k^2) + \underbrace{\frac{\tilde{b}_V}{M_V^2}}_{M_V^2} \epsilon_{\mu\nu\alpha\beta} k^{1\alpha} k^{2\beta} \right]$$

$$g_W^{SM}=e\cos\theta_w M_Z, \quad g_Z^{SM}=2em_Z/\sin2\theta_w$$

$$a_W^{SM}=1=a_Z^{SM} \ , \ b_V^{SM}=0=\tilde{b}_V^{SM} \ , \ \text{and} \ a_V=1+\Delta a_V$$

$$M_H = 120$$
 GeV, $Br(H \rightarrow bb) \approx 0.68$
b-quark detection efficiency = 0.7
 \sqrt{s} = 500 GeV, \mathcal{L} = 500 fb⁻¹

Polarization of initial/final states improves the sensitivity

Effect of longitudinal beam polarization: ZZH case

Using	g Polarize	Unpolarized States		
Coupling	Limits	Observable used	Limits	Observable used
$ \Re(\tilde{b}_Z $ <	0.067	$\mathcal{O}_{UD}(\mathit{R2};e)$	0.067	$A_{UD}(R2;e)$
$ \Re(\tilde{b}_Z) $ \leq	0.17	$\mathcal{O}_{UD}(\mathit{R}1;\mu)$	0.91	$A_{UD}(R1;\mu)$
$ \Im(\tilde{b}_Z) \leq$	0.011	$\mathcal{O}_{FB}(R1;\mu,q)$	0.064	$A_{FB}(R1;\mu,q)$

Use of τ Polarization with unpolarized beams

		Using Pol. of final state $ au^-$			Unpo	plarized $ au$'s
Coupling		Limits		Observable	Limits	Observable
		40% eff.	20% eff.			
$ \Im(b_z) $	<	0.11	0.15	A^L_{comb}	0.35	A_{comb}
$ \Re(ilde{b}_z) $	<	0.28	0.40	A^L_{UD}	0.91	A_{UD}

Studies on New Physics

SUSY: Study on stau pair production on SPS1a' by Mikael Berggren

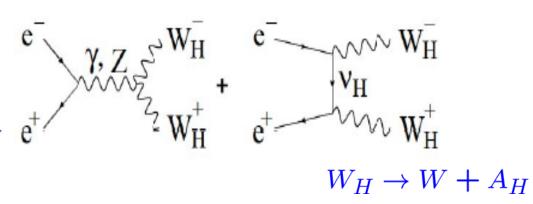
- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}/c^2, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$ $\Delta(M) = 10.2 \text{ GeV}/c^2.$
- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ±1,
 - E_{within 30^{deg} to beam} < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV}$,
 - Two jets with charge ± 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos\theta_{missing\ p}| < 0.75$,

- All background SUSY and SM included.

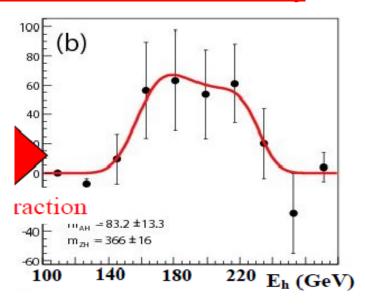
Little Higgs model:

"Study of Little Higgs Model with T-parity" by Yosuke Takubo

<u>Little Higgs partner (T-odd)</u> of photon $\rightarrow A_H$ (Dark matter)


Z, W bosons $\rightarrow Z_H, W_H$

Analysis modes


- $A_H + Z_H @ E_{CM} = 500 \text{ GeV}$
 - xsec: 1.91 fb
 - \rightarrow Z_H \rightarrow H + A_H
 - $M_{AH} + M_{ZH} = 450.9 \text{ GeV}$

- $W_{H}^{+} + W_{H}^{-} @ E_{CM} = 1 \text{ TeV}$
 - > xsec: 277 fb
 - $\rightarrow W_H \rightarrow W + A_H$
 - $M_{WH} + M_{WH} = 736 \text{ GeV}$

ILC has excellent sensitivity

"Distinguishing dark matter nature" by Masaki Asano

WIMP dark matter is normally accompanied by charged particle

Charged particle productions at ILC

Different models

	X_{1}^{0}	X^{\pm}	Model example
spin	0	0	dark doublet
	1/2	1/2	SUSY
	1	1	Little Higgs w/T-parity

How accurately can the ILC distinguish dark matter properties?

→ simulation studies are being performed results will come out soon

Angular distribution of charged particles

Studies on Two Higgs Doublet Models

Simplest extended Higgs model

•SM : Φ_1 THDM: Φ_1 , Φ_2

•Physical states: H_{SM} h, H, A, H[±]

4 typical THDMs by discrete symmetry

Type Y	Type I	e_R^i	d_R^i	u_R^i	L^i	Q^i	Φ_2	Φ_1	
d e	Φ_2 d e	_	_	_	+	+	_	+	Type-I
Type X	Type II	+	+	_	+	+		+	Type-II
u d e	u d e	+	_	_	+	+	_	+	Type-X
	Φ ₁	_	+	_	+	+	_	+	Type-Y

Collider phenomenology on type-X THDM by Kei Yagyu

Type X

→ One Higgs doublet has <u>Yukawa coupling with only leptons</u>

A/H production at LHC

AH pair production at ILC

$$m_A=m_H=150GeV$$
, $sin(\beta - \alpha)=1$, $tan \beta = 10$ and $root(s)=500GeV$

Signal background analysis for T T T events

$\sigma_{\tau\tau\tau}$ [fb]	AH	ZZ	$Z\gamma$	$\gamma\gamma$
No cut	27.0	0.482	0.804	0.371
$ \cos\theta < 0.99$	26.5	0.449	0.645	0.269
$ \cos\theta < 0.9$	25.0	0.324	0.423	0.171
$M_{\tau\tau} \lessgtr m_{\Phi} \pm 15 \text{ GeV}$	14.7	0.021	0.039	0.021

For L=500fb⁻¹
After cuts
S~7350
B~41

Type-X THDM + singlets by Shinya Kanemura

Type-X + right-handed neutrinos

+ singlet scalars (η⁰, S')

Model accounting for neutrino mass, dark matter and electroweak baryogenesis

Radiative neutirno mass

Correct DM relic density

for
$$m_{\eta} = 40 - 65 \text{ GeV}$$

EW baryogenesis

Strongly 1st order phase transition is achieved

 $m_s \sim 400 {
m GeV}$

ILC phys.

Higgs pair production in THDM

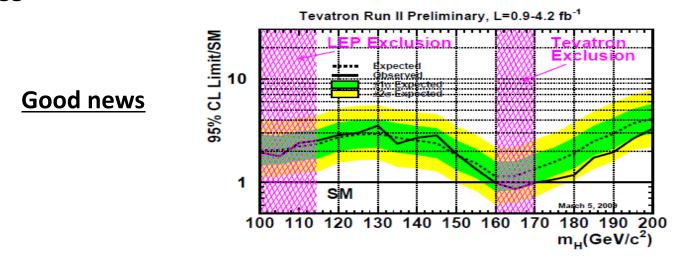
"Enhanced multi-Higgs production within the general 2HDM" by Robert N. Hodgkinson

$$\lambda_{HHH} = \frac{3}{2} \frac{eM_H^2}{s_W M_W}$$

Trilinear coupling can be large for Heavy Higgs

	M_{h^0} [/GeV]	M_{H^0} [/GeV]	M_{A^0} [/GeV]	$M_{H^{\pm}}$ [/GeV]
Set I (solid)	100	190	360	350
Set I' (dash)	100	190	800	800

"Neutral Higgs boson pair production in phton-photon annihilation in the Two Higgs Doublet Model" by Rui Santos



Many studies on <u>Higgs physics</u> have been reported and more results will be obtained near future

Higgs mass is a big issue for precise measurements of Higgs couplings (Yukawa, self coupling)

Yukawa coupling measurements (c, tau, b)

→ Higgs mass < 2 W mass, otherwise H->WW, ZZ hides ff modes

Also, many interesting ILC studies on <u>BSMs</u> have been reported, some of which can/cannot be observed at LHC.

LHC should tell us something about the next direction