

GARLIC and ILDopt

Marcel Reinhard LLR – Ecole polytechnique

ILD Workshop 02/09, Seoul

GARLIC

Pre-Clustering via hit distance: Rol

Remove hits close to extrapolated tracks

Per Rol:

Seed finding: 2-dim energy projection of 7X0

Per Seed:

Core building (hits close to seed axis)

Neighbor clustering (front to back)

Simple verification (min.En/hits, distance track)

Gap correction

ANN rejection

Satellite merging

Additional iteration for big clusters

Final energy estimation

Whats new in GARLIC?

- Leakage correction: very difficult to parametrise
- PreShower hits in projection of the TPC endcap
 - X0 = 0.168 (with projection on TPC electronics)
 - X0 = 0.034 (elsewhere)
- Works on all cell sizes including gap correciton
 - Tested 5x5,10x10, 20x20 mm²

GARLIC for ILD

Single particle efficiencies with cuts

Works down to 150MeV Efficiency: >96% @ 500 MeV 98.2% @ 1GeV >99% for E>2GeV

Pion interactions in tracker create fake clusters that are impossible to reject

Marcel Reinhard LLR - Ecole Polytechnique 120

Efficiencies by angle: 1GeV

Gaps visible in θ

7

Efficiencies by angle: 10GeV

Flat in Φ Gaps visible in θ

Efficiencies by angle: 50GeV

Clustering efficiency at 50 GeV Clustering efficiency at 50 GeV % Fraction of events with cluster [% 100 100 ᠕ᡁ᠋᠕᠆᠋ᠾ᠆᠃᠆᠃᠂᠃᠃᠕᠆᠋᠕ᡁᠬ᠋᠕᠆ᡙ᠆ᡙ᠕᠁᠕᠁᠕ Fraction of events with cluster 80 80 60 60 40 40 20 20 0 0^L -150 50 100 150 0.1 -100 0.9 -50 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 cos(θ)

> Flat in Φ Barrel-Endcap overlap visible in θ

Cluster energy in Φ : 1GeV

Clustered Energy vs ϕ at 1GeV

LLR - Ecole Polytechnique

Cluster energy in Φ : 10GeV

10

Cluster energy in Φ : 50GeV

Clustered Energy vs ϕ at 50GeV ک ق ∑ ¹⁰⁰ 90 Eevent 80 80 70 60 60 50 40 30 30 20 20 10 10 0E -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 [%] ш 1.6 Impact on resolution? 1.2 Local correction sufficient? 8 vs. 12-fold geometry? 0.8 0.6 0.4 0.2 0 -150 -100 -50 50 100 150 0

Cluster energy in θ: 1GeV

Cluster energy in θ: 10GeV

Cluster energy in θ: 50GeV

14

Reduce Barrel-Endcap gap: 40mm

Cell-size: qq events

Performance: qq at 400GeV

Pion interactions not suppressed Reasonable performance

GARLIC on τ 's

$ZH \rightarrow \mu\mu \tau\tau$

		π sim	ρ sim	A1 sim
π	Rec	90.8	1.9	0.6
ρ	Rec	1.1	86.5	10.9
a1	Rec	8.1	11.6	88.5

Outlook

- Refine gap-correction
- Use hit count for low energy
- Develop better leakage correction
- PreShower hits negligible for resolution, differences in populations need to be checked
- 8 or 12-fold geometry? Need to look at loss in energy resolution
- How much can the Barrel-Endcap-gap be reduced? Alternatively need an approach to cluster among "2 ways"
- How to deal with π interactions?
- $\pi/\rho/a_1$ separation for different cell-sizes

