Higgs Recoil Mass and Cross Section Analysis at ILD_00

Hengne Li

LAL Orsay, B. P. 34,
91898 Orsay Cedex,
France

OUTLINE

- Introductory Remarks
- Preparations
- Lepton ID
- $\Delta \mathrm{P} / \mathrm{P}^{2}$ Criterion of Tracks
- Fitting Formulas
- Background Rejection
- Rejection by Cuts
- Assume SM Higgs Decay (SM)
- Independent of Higgs Decay Model (MI)
- Further Rejection by Likelihood
- Fittings and Results
- Conclusions

Introductory Remarks

ZH Recoil Ana. Group:

(EU) Hengne Li, Roman Poeschl, Francois Richard, Manqi Ruan, Zhiqing Zhang (JP) Kazutoshi Ito, Yosuke Takubo, Hitoshi Yamamoto Reviewers:
(EU) Klaus Desch, (JP) Akiya Miyamoto

- Higgs-Strahlung Process:

- Higgs Recoil Mass:

$$
m_{h^{0}}^{2}=s+m_{Z^{0}}^{2}-2 E_{Z^{0}} \sqrt{s}
$$

- Cross Section and Coupling

Strength Measurement:

$$
g^{2} \propto \sigma=N / \mathcal{L} \epsilon
$$

- Mh = 120 GeV
- Ecm $=250 \mathrm{GeV}$
- Beam Energy Spread:
0.3\% for each beam
- Luminosity: $500 \mathrm{fb}-1$ in Analysis
$250 \mathrm{fb}-1$ results will also be reported as requested by the ILD LOI
- Detector Model:

ILD_00

- Event Generation:

SLAC

- Simulation \& Reconstruction:

DESY \& KEK

Introductory Remarks

			$\begin{gathered} \mathrm{e}^{+} \mathrm{L} \mathrm{e}^{-} \mathrm{R} \\ \mathrm{e}+:-1.0, \mathrm{e}-:+1.0 \end{gathered}$	
$\mu \mu X$	Reactions	Cross-Section	Reactions	Cross-Section
	$\mu \mu \boldsymbol{X}$	17.1 fb	$\mu \mu \boldsymbol{X}$	10.97 fb
	$\mu \mu$	$17.1 \mathrm{pb}(330.4 \mathrm{fb})$	$\mu \mu$	$12.9 \mathrm{pb}(215.6 \mathrm{fb})$
	$\tau \tau$	17.1 pb	$\tau \tau$	12.9 pb
	$\mu \mu \nu \nu$	849.0 fb	$\mu \mu \nu \nu$	45.0 fb
	$\mu \mu \mu \mu$	11.4 fb	$\mu \mu \mu \mu$	7.2 fb
	$\mu \mu \mathrm{e}$	1106.7 fb	$\mu \mu \mathrm{e}$	1088.6 fb
	$\mu \mu \tau \tau$	23.1 fb	$\mu \mu \tau \tau$	14.7 fb
	$\mu \mu \mathrm{qq}$	277.7 fb	$\mu \mu \mathrm{qq}$	148.6 fb
eeX	Reactions	Cross-Section	Reactions	Cross-Section
	$e e X$	17.9 fb	$e e X$	11.29 fb
	ee	$17.3 \mathrm{nb}(733.9 \mathrm{fb})$	ee	$17.3 \mathrm{nb}(658.9 \mathrm{fb})$
	$\tau \tau$	17.1 pb	$\tau \tau$	12.9 pb
	ee $\nu \nu$	1015.6 fb	ee $\nu \nu$	27.5 fb
	ее $\mu \mu$	1106.7 fb	ее $\mu \mu$	1088.6 fb
	еeee	995.6 fb	еeee	982.4 fb
	ee $\tau \tau$	965.1 fb	$\mathrm{ee} \tau \tau$	948.8 fb
	eeqq	1366.5 fb	eeqq	1168.9 fb

(1) $\mu \mu v v$ and eevv have major contribution from WW, but also from ZZ.
(2) In the analysis, $\mu \mu f f$ refers to $\mu \mu e e+\mu \mu \mu \mu+\mu \mu \pi \tau+\mu \mu q q$,

Pre-cuts for ee and $\mu \mu$: (cross-sections after pre-cuts are in blankets)
Pre-cuts for $\mu \mu$:

- $M_{\mu^{+} \mu^{-}} \in(71.18,111.18) \mathrm{GeV}$
- $P_{T \mu^{+} \mu^{-}}>10 \mathrm{GeV}$
- $M_{\text {recoil }} \in(105,165) \mathrm{GeV}$

Pre-cuts for $e e$:

- $\left|\cos \theta_{e^{+} / e^{-}}\right|<0.95$
- $M_{e^{+} e^{-}} \in(71.18,111.18) \mathrm{GeV}$
- $P_{T e^{+} e^{-}}>10 \mathrm{GeV}$
- $M_{\text {recoil }} \in(105,165) \mathrm{GeV}$

Preparation 1: Lepton ID

- Refer to the study of Hajrah Tabassam, from discussions with Roberval Walsh, we define our cuts for lepton ID as:

$$
\begin{array}{cc}
\text { muon ID } & \text { electron ID } \\
E_{\text {ecal }} / E_{\text {total }}<0.5 & E_{\text {ecal }} / E_{\text {total }}>0.6 \\
E_{\text {cal }} / P_{\text {track }}<0.3 & E_{\text {cal }} / P_{\text {track }}>0.9
\end{array}
$$

Pol. (e^{+}Re-L) for illustration	Cuts (for $\mathrm{P}>15 \mathrm{GeV}$): single particle	$\mu \mu \mathrm{X}$ (muon ID)	eeX (electron ID)
	$N_{\text {true }}$ (N truth)	31833	34301
	Ntrueniden	31063	33017
	$\mathrm{N}_{\text {iden }}$	33986	34346
	Efficiency ($\mathrm{N}_{\text {trueniden }} / \mathrm{N}_{\text {true }}$)	97.6\%	96.3\%
	Purity ($\mathrm{N}_{\text {trueniden }} / \mathrm{Niden}_{\text {a }}$)	91.4\%	96.1\%
	Efficiency Both lepton ID: (no Prequest, select according to Mz)	95.4\%	98.8\%

We dropped the improvements on the two muon ID applied in previous study, which is to search for the other muon from tracks if only one muon identified, (refer to my previous reports).

Preparation 2: $\Delta \mathrm{P} / \mathrm{P}^{2}$ criterion in the selection of lepton candidates

- Parameterize $\Delta \mathrm{P} / \mathrm{P}^{2}$ for central region

$$
\begin{aligned}
& \Delta P / P^{2}=a \oplus b / P \\
& \text { where } a=2.5 \times 10^{-5} ; b=8 \times 10^{-4}
\end{aligned}
$$

- The criterion $\Delta P / P^{2}$ applied

$\Delta \mathrm{P} / \mathrm{P}^{2}$ Criterion	N evts on recoil mass peak, Mh within $(119,121) \mathrm{GeV}$
Before Apply	2812
After Apply	2791

$$
\begin{array}{ll}
|\cos \theta|<0.78: & \Delta P / P^{2}<2 \times\left(2.5 \times 10^{-5} \oplus 8 \times 10^{-4} / P\right) \\
|\cos \theta|>0.78: & \Delta P / P^{2}<5 \times 10^{-4}
\end{array}
$$

Preparation 3: Fitting Methods

\square Two methods applied for the signal:
\square Gaussian Peak Exponential Tail (GPET)

$$
f(x)=N \begin{cases}e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}} & : \frac{x-x_{0}}{\sigma} \leq k \\ \beta e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}}+(1-\beta) e^{-\left(x-x_{0}\right) \frac{k}{\sigma}} e^{\frac{k^{2}}{2}} & : \frac{x-x_{0}}{\sigma}>k\end{cases}
$$

\square Convolution of Empirical with Gaussian (CEG)

$$
\begin{aligned}
& F(x)=N e^{-A x} \int_{x_{0}-x}^{\sqrt{s}-x} F_{H}(x+t) e^{-\frac{t^{2}}{2 \sigma^{2}}} d t \\
& F_{H}(x)=\left(\frac{x-x_{0}}{\sqrt{s}-x_{0}}\right)^{\beta-1}
\end{aligned}
$$

Background:
\square Polynomial with 3 coefficients

Analysis Procedures

Higgs Decay Model	SM Higgs Decay	Model Independent
Background Rejection	SM Cut-chain	MI Cut-chain
	Likelihood Further Rej.	Likelihood Further Rej.
Fitting		

- Background Rejection
- Rejection by Cuts
- SM Cut-Chain: Assume SM Higgs Decay
- MI Cut-Chain: Independent of Higgs Decay Model
- Further Rejection by Likelihood
- Fitting and Results

BKG Rejection by Cuts: SM Cut-Chain

- For SM Higgs decay, multiplicity in the final states is the most efficient criterion to reject the $2 f$ and WW

Pol. ($\mathrm{e}^{+} \mathrm{Re}^{-}$L)
for illustration

- In order to keep the $\mathrm{H}->\mathrm{Tt}$ in the signals :
- At most: Ntks>1
- How to reject evts with Ntks=2 in $\mu \mu$, $\tau \tau$ and WW ?
- Define $\Delta \theta_{\text {2tk }}: \Delta \theta$ between these two additional tracks for Ntks=2.

H->TT Additional Number of Tracks besides the two lepton candidates

BKG Rejection by Cuts: SM Cut-Chain

Pol. ($\mathrm{e}^{+}{ }^{\text {Re}}{ }^{-}$- $)$ for illustration

Nevts remained:	ZH-> $\mu \mu \mathrm{X}$	ee-> $\mu \mu$	ee->tr	ee-> $\mu \mu \mathrm{vv}$
before any restriction:	8563	8.5M	8.6M	425k
Both μ identified	8169 (95.4\%)	143k (1.7\%)	257k (3\%)	374k(88.1\%)
+ pre-cuts	7166 (83.7\%)		17k (0.2\%)	54k (12.6\%)
+ Ntks>1	7112 (83.0\%)	8.8k (0.10\%)	2k (0.025\%)	959 (0.23\%)
$+\left\|\Delta \theta_{2 t k}\right\|>0.01$	7100 (82.9\%)	819 (0.01\%)	1558 (0.02\%)	122 (0.03\%)
$+\left\|\Delta \theta_{\text {min }}\right\rangle>0.01$	7000 (81.7\%)	506 (0.006\%)	346 (0.004\%)	18 (0.004\%)
+ acop (0.2, 3.0)	6495(75.8\%)	354 (0.004\%)	0 (0\%)	18 (0.004\%)
+ Mh (115, 150) GeV	6130(71.6\%)	229 (0.003\%)	0 (0\%)	16 (0.004\%)
Nevts remained:	ZH->eeX	ee->ee	ee->tt	ee->eevv
before any restriction:	8588	8.7G	8.6M	508k
Both e identified:	8439 (98.3\%)		965k(11.3\%)	415k (81.6\%)
+ pre-cuts	5593 (62.5\%)	267k	29k (0.3\%)	61k (12.1\%)
+ Ntks>1 :	5548 (62.0\%)	$16 \mathrm{k}\left(2 \times 10^{-6}\right)$	8309 (0.1\%)	1708 (0.34\%)
$+\left\|\Delta \theta_{2 t k}\right\|>0.01$	5540 (61.9\%)	$2607\left(3 \times 10^{-7}\right)$	5885 (7×10^{-4})	279 (0.05\%)
$+\mid \Delta \theta_{\text {min }} \gg 0.01$	5448 (60.9\%)	$844\left(1 \times 10^{-7}\right)$	$1212\left(1 \times 10^{-4}\right)$	31 (0.006\%)
+ acop (0.2, 3.0)	5054 (56.5\%)	$712\left(8 \times 10^{-8}\right)$	0 (0\%)	30 (0.006\%)
$+\mathrm{Mh}(115,150) \mathrm{GeV}$	4631 (51.8\%)	$456\left(5 \times 10^{-8}\right)$	0 (0\%)	11 (0.002\%)

Nevts are weighted according to the cross-sections and luminosity $500 \mathrm{fb}^{-1}$

- Seems $\Delta \theta_{\text {2tk }}$ is not enough
- Define $\Delta \theta_{\min }$:
- the smallest $\Delta \theta$ between the additional tracks and the muon candidates
$\Delta \theta$ between Additional Tracks and μ candidates

- Because mis-identification of other particles to be muons/ electrons

BKG Rejection by Cuts: MI Cut-Chain

- muon channel with pol.
$\mathrm{e}^{+} \mathrm{R}^{-}$ц for illustration
$\mu \mu$ are pre-cutted
Cuts, based on lepton pair properties:
- $P_{T d l}>20 \mathrm{GeV}$
- $M_{d l} \in(80,100) G e V$

Pol. $\mathrm{e}^{+} \mathrm{R}^{-} \mathrm{L}$
for illustration

- $\operatorname{acop} \in(0.2,3.0)$

Nevts remained:	ZH-> $\mu \mu \mathrm{X}$	ee-> $\mu \mu$	ee->tit	ee-> $\mu \mu \mathrm{vv}$	ee-> $\mu \mu \mathrm{ff}$
before any restriction:	8563	8.5M	8.6M	425k	710k
Both μ id + pre-cuts	7166 (83.7\%)	143k (1.7\%)	17k (0.2\%)	54k (12.6\%)	48k (6.7\%)
+ $\mathrm{P}_{\text {Tall }}>20 \mathrm{GeV}$	6777(79.1\%)	71k(0.81\%)	12k(0.14\%)	46k(10.8\%)	38k(5.4\%)
+ $\mathrm{Mdl} \in(80,100) \mathrm{GeV}$	6230(72.7\%)	54k(0.64\%)	6578(0.08\%)	27k(6.4\%)	30k(4.2\%)
+ acop (0.2, 3.0)	5827(68.0\%)	$45 k(0.53 \%)$	0(0\%)	25k(6.0\%)	27k(3.8\%)

Nevts remained:	ZH->eeX	ee->ee	ee->Tt	ee->eevv	ee->eeff
before any restriction:	8588	8.7 G	8.6 M	508 k	2.2 M
Both e id + pre-cuts	$5593(62.5 \%)$	$267 \mathrm{k}(0.003 \%)$	$29 \mathrm{k}(0.3 \%)$	$61 \mathrm{k}(12.1 \%)$	$41 \mathrm{k}(1.8 \%)$
$+\mathrm{P}_{\mathrm{Tdl}}>20 \mathrm{GeV}$	$5283(59.1 \%)$	$195(0.002 \%)$	$20 \mathrm{k}(0.24 \%)$	$53 \mathrm{k}(10.4 \%)$	$35 \mathrm{k}(1.6 \%)$
$+\mathrm{M}_{\mathrm{dl}} \in(80,100) \mathrm{GeV}$	$4508(50.4 \%)$	$108(0.001 \%)$	$12(0.14 \%)$	$29 \mathrm{k}(5.8 \%)$	$25 \mathrm{k}(1.1 \%)$
$+\operatorname{acop}(0.2,3.0)$	$4211(47.1 \%)$	$98 \mathrm{k}(0.001 \%)$	$866(0.01 \%)$	$28 \mathrm{k}(5.4 \%)$	$23 \mathrm{k}(1.0 \%)$

2009-FEB-16 HENGNE LI @ LAL

BKG Rejection by Cuts: Independent of Higgs Decay Model

NEW!

ISR P_{T} balance for $\mu \mu$ and ee rejection

Idea: (Thanks to Francois' idea)

- For $\mu \mu$ and ee: P_{T} of ISR photon should balance the P_{t} of di-lepton system;
- For signal: Impossible to have ISR to balance Z P_{T}, independent of Higgs decay model.
Requirements:
- $M_{d ı} \in(80,100) \mathrm{GeV}$: large FSR events are removed
- $\mathrm{P}_{\mathrm{Tdl}}>20 \mathrm{GeV}$: Large P_{T} ISR photon can be detected

Define $\Delta \mathrm{P}_{\text {Tbal }}=\mathrm{P}_{\text {Tdl }}-\mathrm{P}_{\mathrm{T} Y}$

Reduces $\mu \mu$ and
$\mathbf{P}_{\text {Toll }}$ vs. $\mathbf{P}_{\mathrm{T}_{y}}$ of ISR Photon, $u \mu$
 ee further by 1 to 2 orders of magnitude Signal lost: ~1\%

ISR photon conversions

BKG Rejection by Cuts: Independent of Higgs Decay Model

To reject the ISR Photon conversions:

- Cut $\left|\Delta \theta_{2 \text { tk }}\right|>0.01$: Only apply on events with 2 additional tracks
- Reject $\mu \mu$ and ee Further by a factor of 2.

Pol. $\mathrm{e}^{+}{ }^{\text {R }} \mathrm{e}^{-} \mathrm{f}$ for illustration

Nevts remained:	ZH-> $\mu \mu \mathrm{X}$	ee-> $\mu \boldsymbol{\mu}$	ee->tr	ee-> $\boldsymbol{\mu} \mu \mathrm{vv}$	ee-> $\mu \boldsymbol{\mu f f}$
before any restriction:	8563	8.5 M	8.6 M	425 k	710 k
cuts applied before	$5827(68.0 \%)$	$45 \mathrm{k}(0.53 \%)$	$0(0 \%)$	$25 \mathrm{k}(6.0 \%)$	$27 \mathrm{k}(3.8 \%)$
$+\Delta \mathrm{P}_{\text {Tbal. }}>10 \mathrm{GeV}$	$5712(66.7 \%)$	$2618(0.03 \%)$	$0(0 \%)$	$23 \mathrm{k}(5.5 \%)$	$25 \mathrm{k}(3.6 \%)$
$+\mathrm{I} \mathrm{\Delta} \mathrm{\theta}_{2 \text { tkl }}>0.01$	$5704(66.6 \%)$	$1044(0.01 \%)$	$0(0 \%)$	$23 \mathrm{k}(5.4 \%)$	$25 \mathrm{k}(3.6 \%)$
$+\mathrm{Mh}(115,150) \mathrm{GeV}$	$5553(64.8 \%)$	$761(0.009 \%)$	$0(0 \%)$	$16 \mathrm{k}(3.8 \%)$	$15.5 \mathrm{k}(2.2 \%)$

Nevts remained:	ZH->eeX	ee->ee	ee->TT	ee->eevv	ee->eeff
before any restriction:	8588	8.7 G	8.6 M	508 k	2.2 M
eeX	cuts applied before	$4211(47.1 \%)$	$98 \mathrm{k}(0.001 \%)$	$866(0.01 \%)$	$28(5.4 \%)$
$+\Delta \mathrm{P}_{\text {Tbal. }}>10 \mathrm{GeV}$	$4095(45.8 \%)$	$6618\left(8 \times 10^{-7}\right)$	$606(0.007 \%)$	$24 \mathrm{k}(4.7 \%)$	$22 \mathrm{k}(1.0 \%)$
$+\mid \Delta \theta_{2 \text { tk }} \mathrm{l}>0.01$	$4089(45.7 \%)$	$3660\left(4 \times 10^{-7}\right)$	$519(0.006 \%)$	$23.5 \mathrm{k}(4.6 \%)$	$21.5 \mathrm{k}(0.98 \%)$
$+\mathrm{Mh}(115,150) \mathrm{GeV}$	$3960(44.3 \%)$	$2706\left(3 \times 10^{-7}\right)$	$260(0.003 \%)$	$16.5 \mathrm{k}(3.3 \%)$	$13 \mathrm{k}(0.59 \%)$

BK Further Rejection by Likelihood

 PDFsAfter Cuts Rejection, Apply Further Rejection using Likelihood Method

Likelihood:

$$
\begin{aligned}
& \text { lihood: } \\
& L=\prod_{i} P_{i} \text { ith Variable }
\end{aligned}
$$

Likelihood Fraction:

$$
\underset{\text { within }(0,1)}{f_{L}}=L_{S} /\left(L_{S}+L_{B}\right)
$$

Decide the f_{L} cut by the maximum significance

f_{L} Distribution ${ }^{\mathrm{L}^{\mathrm{L}}}$

Nevts remained vs. $f_{\llcorner }$cuts

Significance vs. f_{L} cuts

Significance ${ }^{\text {the }}$

Taken:
Pol. $\mathrm{e}^{+}{ }^{+} \mathrm{e}^{-}$L muon channel SM Analysis

For illustration

Background Rejection Summary Table

Ana.	Pol.	Ch.	Cuts	$\mu \mu \mathrm{X} / \mathrm{eeX}$	$\mu \mu / \mathrm{ee}$	TT	$\mu \mu \mathrm{V}$ /eevV	$\mu \mu \mathrm{ff} / \mathrm{eeff}$	S/B	$S / \sqrt{ }(S+B)$
SM	$\begin{aligned} & \mathrm{e}^{+} \mathrm{R}^{2} \\ & \mathrm{e}^{-L} \end{aligned}$	μ	SM cut-chain:	6130(71.6\%)	229	0	16	21.9k		
			+ $\mathrm{f}_{\mathrm{L}}>0.31$	5116(59.7\%)	63	0	7	11.3k	0.45	39.8
		e	SM cut-chain:	4631(51.8\%)	456	0	11	20.2k		
			+ $\mathrm{f}_{\mathrm{L}}>0.33$	3939(44.0\%)	180	0	6	10.5k	0.37	32.6
	$e^{+} L$ $e^{-}{ }^{-}$	μ	SM cut-chain:	3947(72.0\%)	146	0	0	11.0k		
			+ $\mathrm{f}_{\mathrm{L}}>0.27$	3435(62.6\%)	31	0	0	5.3k	0.64	36.7
		e	SM cut-chain:	3947(72.0\%)	338	0	2	9.9k		
			+ $\mathrm{f}_{\mathrm{L}}>0.30$	2480(43.9\%)	112	0	0	4.7k	0.52	29.0
MI	$e^{+} R$ e^{-}L	μ	MI cut-chain:	5553(64.8\%)	761	0	16k	15.5k		
			+ $\mathrm{f}_{\mathrm{L}}>0.19$	4600(53.7\%)	471	0	8244	9297	0.26	30.6
		e	MI cut-chain:	3960(44.3\%)	2706	260	16.5k	13 k		
			+ $\mathrm{f}_{\mathrm{L}}>0.17$	3374(37.7\%)	1524	260	9403	8175	0.17	22.4
	$\mathrm{e}^{+} \mathrm{L}$$e^{-}{ }_{R}$	μ	MI cut-chain:	3605(65.7\%)	518	0	1452	7309		
			+ $\mathrm{f}_{\mathrm{L}}>0.24$	3208(58.5\%)	362	0	1075	4563	0.53	33.4
		e	MI cut-chain:	2511(44.5\%)	2457	195	1339	6119		
			$+\mathrm{f}_{\mathrm{L}}>0.29$	2154(38.2\%)	1463	195	837	3439	0.36	24.0

Fittings

Ana.	Pol.	$\mu \mu \mathrm{X}$		eeX	
		GPEG	CEG	GPET	CEG
SM	$\mathrm{e}^{+} \mathrm{R}$ $\mathrm{e}_{\text {- }}$				
MI					

M Higgs :
My Favorite Fitting I: (GPET)
$119.981 \pm 0.50 \mathrm{GeV}$ Cross-Section:
$11.31 \pm 0.39 \mathrm{fb}(0.34 \%)$

My Favorite Fitting II: (CEG)

Higgs Recoil Mass Spectrum, μ channel, $\sqrt{\mathbf{s}}=250 \mathrm{GeV}$, ILD_00

Mass Resolution vs. Beam Energy Spread

An Important Issue, before give you all the results:

- The Mass Resolution introduced by Beam Energy Spread (0.3% for each beam), is larger than we expected.
By (Gaussian) fitting the left side of the Mass Peak of:
- the Generator Data: $\Delta M_{\text {beam }}=730 \mathrm{MeV}$
- the Simulation Data: $\Delta M_{\text {total }}=870 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta M_{\text {total }}=\Delta M_{\text {beam }} \oplus \Delta M_{\text {detector }} \\
& \Rightarrow \Delta M_{\text {detector }}=470 \mathrm{MeV}
\end{aligned}
$$

Which means:
The Machine Introduced more inaccuracy into the Recoil Mass measurement than our ILD Detector!

In reporting the results: I Will Separate the Stat. Err. of Mh into $\delta M_{\text {beam }}$ and $\delta M_{\text {detector }}$ accordingly .

Results Summary Table

Results in Blue: according to $500 \mathrm{fb}^{-1}$,
Results in Red: according to $250 \mathrm{fb}^{-1}$, as requested by the ILD LOI.

Ana.	Pol.	Ch.	M_{h} stat. err. (MeV)						Cross-Section stat. err. (\%)		S/B	$\mathrm{S} / \sqrt{ }(\mathrm{S}+\mathrm{B})$
			$\delta M_{\text {total }}$		$\delta M_{\text {beam }}$		$\delta M_{\text {detector }}$					
SM	$\mathrm{e}^{+} \mathrm{Re}^{-} \mathrm{L}$	μ	44	62	37	52	24	34	3.1	4.4	0.45	39.8
		e	72	102	54	76	47	66	4.4	6.2	0.37	32.6
	$\mathrm{e}^{+} \mathrm{Le}^{-} \mathrm{R}$	μ	50	71	42	59	27	38	3.4	4.8	0.64	36.7
		e	82	116	62	88	54	76	4.8	6.8	0.52	29.0
MI	$\mathrm{e}^{+} \mathrm{R}^{-} \mathrm{L}$	μ	49	69	41	58	27	38	3.8	5.4	0.26	30.6
		e	100	141	75	106	66	93	5.2	7.4	0.17	22.4
	$\mathrm{e}^{+} \mathrm{Le}^{-} \mathrm{R}$	μ	52	74	44	62	28	40	3.7	5.2	0.53	33.4
		e	112	158	84	119	73	103	5.8	8.2	0.36	24.0

- The Stat. Err. of M_{h} is separated into $\delta M_{\text {beam }}$ and $\delta M_{\text {detector }}$ according to the $\Delta M_{\text {beam }}$ and $\Delta M_{\text {detector }}$, (different for $\mu \mu \mathrm{X}$ and eeX; for eeX, $\Delta M_{\text {total }}=970 \mathrm{MeV}, \Delta M_{\text {beam }}=730 \mathrm{MeV}$ and $\Delta M_{\text {detector }}=640 \mathrm{MeV}$)
- Stat. Err.s of Cross-Section are reported relatively (in \%), since the cross-sections are different between two polarization setups

Conclusions and To Do List

Conclusions

- Analyses are done and methods are validated for $\mu \mu \mathrm{X}$ and eeX channels, with full polarizations.
- Both fitting methods give the similar good results
- Machine introduced larger error into the Higgs mass measurement than the ILD Detector
- Mh stat. err.s are separated into machine contributions and detector contributions: Helpful for the detector performance study

To Do List

- Results with LOI requested polarizations (e:+80\%, p:-30\%) and (e:-80\%, p:+30\%) will be given as soon as possible.
- Up to now, no gamma-gamma backgrounds taken into the fittings: results are coming soon.

Kazutoshi is going to give the talk about the gamma-gamma rejection next.

Thanks!

Backup Slides

$\Delta \mathrm{P} / \mathrm{P}^{2}$ criterion in the selection of lepton candidates

- Protect our study from bad measured tracks
- $\Delta \mathrm{P} / \mathrm{P}^{2}$ criterion for our lepton candidates is applied
- With Francois' directions and validations step by step

Background Rejection Summary Table

Pol.	Ana.	Cha.	Cuts	$\mu \mu \mathrm{X} /$ eeX	$\mu \mu /$ ee	TT	$\mu \mu v v / e e v v$	$\mu \mu \mathrm{ff} / \mathrm{eeff}$	S/B	$\mathrm{S} / \sqrt{ }(\mathrm{S}+\mathrm{B})$
$\begin{aligned} & e+R \\ & e-L \end{aligned}$	SM	μ	SM cut-chain:	6130(71.6\%)	229	0	16	21.9k		
			+ fL >0.31	5116(59.7\%)	63	0	7	11.3k	0.45	39.8
		e	SM cut-chain:	4631(51.8\%)	456	0	11	20.2k		
			+ fL >0.33	3939(44.0\%)	180	0	6	10.5k	0.37	32.6
	MI	μ	MI cut-chain:	5553(64.8\%)	761	0	16k	15.5k		
			+ fL>0.19	4600(53.7\%)	471	0	8244	9297	0.53	33.4
		e	MI cut-chain:	3960(44.3\%)	2706	260	16.5k	13k		
			+ fL>0.17	3374(37.7\%)	1524	260	9403	8175	0.36	24.0
$\begin{aligned} & \text { e+L } \\ & \text { e-R } \end{aligned}$	SM	μ	SM cut-chain:	3947(72.0\%)	146	0	0	11.0k		
			+ fL>0.27	3435(62.6\%)	31	0	0	5.3k	0.26	30.6
		e	SM cut-chain:	3947(72.0\%)	338	0	2	9.9k		
			+ fL>0.30	2480(43.9\%)	112	0	0	4.7k	0.17	22.4
	MI	μ	MI cut-chain:	3605(65.7\%)	518	0	1452	7309		
			+ fL>0.24	3208(58.5\%)	362	0	1075	4563	0.64	36.7
		e	MI cut-chain:	2511(44.5\%)	2457	195	1339	6119		
			+ fL >0.29	2154(38.2\%)	1463	195	837	3439	0.52	29.0

Results

Pol.	Ch.	Fit.	$\mathrm{M}_{\mathrm{h}}(\mathrm{GeV})$	Cross-Section (fb)
$\mathrm{e}_{\mathrm{R}}^{+} \mathrm{e}_{\mathrm{L}}^{-}$	$\mu \mu X$	GPET	119.977 ± 0.044	$17.15 \pm 0.54(3.1 \%)$
		CEG	120.158 ± 0.046	$17.21 \pm 0.54(3.1 \%)$
	$e e X$	GPET	119.954 ± 0.072	$18.38 \pm 0.81(4.4 \%)$
		CEG	120.226 ± 0.078	$18.35 \pm 0.80(4.4 \%)$
$\mathrm{e}_{\mathrm{L}}^{+} \mathrm{e}_{\mathrm{R}}^{-}$	$\mu \mu X$	GPET	119.981 ± 0.050	$11.31 \pm 0.39(3.4 \%)$
		CEG	120.069 ± 0.051	$11.33 \pm 0.39(3.4 \%)$
	$e e X$	GPET	119.997 ± 0.084	$11.46 \pm 0.55(4.8 \%)$
		CEG	120.021 ± 0.082	$11.41 \pm 0.55(4.8 \%)$

Pol.	Ch.	Fit.	$\mathrm{M}_{\mathrm{h}}(\mathrm{GeV})$	Cross-Section (fb)
$\mathrm{e}_{\mathrm{R}}^{+} \mathrm{e}_{\mathrm{L}}^{-}$	$\mu \mu X$	GPET	119.938 ± 0.049	$16.75 \pm 0.65(3.9 \%)$
		CEG	120.073 ± 0.054	$16.73 \pm 0.64(3.8 \%)$
	$e e X$	GPET	120.094 ± 0.110	$20.29 \pm 1.06(5.3 \%)$
		CEG	120.286 ± 0.100	$20.35 \pm 1.06(5.3 \%)$
$\mathrm{e}_{\mathrm{L}}^{+} \mathrm{e}_{\mathrm{R}}^{-}$		GPET	120.004 ± 0.052	$11.24 \pm 0.42(3.7 \%)$
		CEG	120.102 ± 0.054	$11.05 \pm 0.41(3.7 \%)$
	$e e X$	GPET	119.981 ± 0.112	$10.79 \pm 0.63(5.8 \%)$
		CEG	119.922 ± 0.112	$10.77 \pm 0.63(5.8 \%)$

SM Rejection

$\mathrm{N}_{\text {evts }}$ Remained:	$\mu \mu X$	$\mu \mu$	$\tau \tau$	$\mu \mu \nu \nu$
Before any restriction:	8563	8.5 M	8.6 M	425 k
Both μ identified	$8169(95.4 \%)$		$257 \mathrm{k}(3 \%)$	$374 \mathrm{k}(88.1 \%)$
+ pre-cuts	$7166(83.7 \%)$	$143 \mathrm{k}(1.7 \%)$	$17 \mathrm{k}(0.2 \%)$	$54 \mathrm{k}(12.6 \%)$
$+\mathrm{N}_{\text {add. } \mathrm{TK}}>1$	$7112(83.0 \%)$	$8.8 \mathrm{k}(0.10 \%)$	$2 \mathrm{k}(0.025 \%)$	$959(0.23 \%)$
$+\Delta \theta_{2 \mathrm{tk}}>0.01$	$7100(82.9 \%)$	$819(0.01 \%)$	$1558(0.02 \%)$	$122(0.03 \%)$
$+\Delta \theta_{\min }>0.01$	$7000(81.7 \%)$	$506(0.006 \%)$	$346(0.004 \%)$	$18(0.004 \%)$
$+\mathrm{acop}(0.2,3.0)$	$6495(75.8 \%)$	$354(0.004 \%)$	$0(0 \%)$	$18(0.004 \%)$
$+\mathrm{M}_{\mathrm{h}}(115,150) \mathrm{GeV}$	$6130(71.6 \%)$	$229(0.003 \%)$	$0(0 \%)$	$16(0.004 \%)$

Table 4: Number of events remained after each cuts for $\mu \mu \mathrm{X}$, Polarization $\mathrm{e}_{\mathrm{R}}^{+} \mathrm{e}_{\mathrm{L}}^{-}$

$\mathrm{N}_{\text {evts }}$ Remained:	$e e X$	$e e$	$\tau \tau$	$e e \nu \nu$
Before any restriction:	8588	8.7 G	8.6 M	508 k
Both e identified	$8439(98.3 \%)$		$965 \mathrm{k}(11.3 \%)$	$415 \mathrm{k}(81.6 \%)$
+ pre-cuts	$5593(62.5 \%)$	$267 \mathrm{k}(0.003 \%)$	$29 \mathrm{k}(0.3 \%)$	$61 \mathrm{k}(12.1 \%)$
$+\mathrm{N}_{\text {add.TK }}>1$	$5548(62.0 \%)$	$16 \mathrm{k}\left(2 \times 10^{-6}\right)$	$8309(0.1 \%)$	$1708(0.34 \%)$
$+\Delta \theta_{2 \mathrm{tk}}>0.01$	$5540(61.9 \%)$	$2607\left(3 \times 10^{-7}\right)$	$5885\left(7 \times 10^{-4}\right)$	$279(0.05 \%)$
$+\Delta \theta_{\min }>0.01$	$5448(60.9 \%)$	$844\left(1 \times 10^{-7}\right)$	$1212\left(1 \times 10^{-4}\right)$	$31(0.006 \%)$
$+\operatorname{acop}(0.2,3.0)$	$5054(56.5 \%)$	$712\left(8 \times 10^{-8}\right)$	$0(0 \%)$	$30(0.006 \%)$
$+\mathrm{M}_{\mathrm{h}}(115,150) \mathrm{GeV}$	$4631(51.8 \%)$	$456\left(5 \times 10^{-8}\right)$	$0(0 \%)$	$11(0.002 \%)$

Table 5: Number of events remained after each cuts for eeX, Polarization $\mathrm{e}_{\mathrm{R}}^{+} \mathrm{e}_{\mathrm{L}}^{-}$

SM Rejection

$\mathrm{N}_{\text {evts }}$ Remained:	$\mu \mu X$	$\mu \mu$	$\tau \tau$	$\mu \mu \nu \nu$
Before any restriction:	5484	6.4 M	6.4 M	22.5 k
Both μ identified	$5248(95.7 \%)$		$193 \mathrm{k}(3 \%)$	$17.8 \mathrm{k}(79.2 \%)$
+ pre-cuts	$4620(84.2 \%)$	$93.5 \mathrm{k}(1.5 \%)$	$13.4 \mathrm{k}(0.2 \%)$	$3883(17.3 \%)$
$+\mathrm{N}_{\text {add. }} \mathrm{TK}>1$	$4592(83.7 \%)$	$5680(0.09 \%)$	$1626(0.025 \%)$	$58(0.26 \%)$
$+\Delta \theta_{2 \mathrm{tk}}>0.01$	$4584(83.6 \%)$	$526(0.008 \%)$	$1171(0.02 \%)$	$6(0.03 \%)$
$+\Delta \theta_{\min }>0.01$	$4513(82.3 \%)$	$335(0.005 \%)$	$260(0.004 \%)$	$0(0 \%)$
$+\operatorname{acop}(0.2,3.0)$	$4172(76.1 \%)$	$249(0.004 \%)$	$0(0 \%)$	$0(0 \%)$
$+\mathrm{M}_{\mathrm{h}}(115,150) \mathrm{GeV}$	$3947(72.0 \%)$	$146(0.002 \%)$	$0(0 \%)$	$0(0 \%)$

Table 6: Number of events remained after each cuts for $\mu \mu \mathrm{X}$, Polarization $\mathrm{e}_{\mathrm{L}}^{+} \mathrm{e}_{\mathrm{R}}^{-}$

$\mathrm{N}_{\text {evts }}$ Remained:	$e e X$	$e e$	$\tau \tau$	$e e \nu \nu$
Before any restriction:	5645	8.7 G	6.4 M	35.2 k
Both e identified	$5544(98.2 \%)$		$725 \mathrm{k}(11.3 \%)$	$21.6 \mathrm{k}(61.3 \%)$
	+ pre-cuts	$3534(62.6 \%)$	$241 \mathrm{k}(0.003 \%)$	$22 \mathrm{k}(0.3 \%)$
$+\mathrm{N}_{\text {add.TK }}>1$	$3503(62.1 \%)$	$14.6 \mathrm{k}\left(1.7 \times 10^{-6}\right)$	$6244(0.1 \%)$	$71(0.2 \%)$
$+\Delta \theta_{2 \mathrm{tk}}>0.01$	$3497(61.9 \%)$	$2216\left(3 \times 10^{-7}\right)$	$4423(0.07 \%)$	$8(0.02 \%)$
$+\Delta \theta_{\min }>0.01$	$3445(61.0 \%)$	$645\left(7 \times 10^{-8}\right)$	$911(0.01 \%)$	$2(0.0006 \%)$
$+\operatorname{acop}(0.2,3.0)$	$3209(56.9 \%)$	$552\left(6 \times 10^{-8}\right)$	$0(0 \%)$	$2(0.006 \%)$
$+\mathrm{M}_{\mathrm{h}}(115,150) \mathrm{GeV}$	$2935(52.0 \%)$	$338\left(4 \times 10^{-8}\right)$	$0(0 \%)$	$2(0.006 \%)$

Table 7: Number of events remained after each cuts for eeX, Polarization $e_{L}^{+} e_{R}^{-}$

MI Rejection

$\mathrm{N}_{\text {evts }}$ Remained:	$\mu \mu X$	$\mu \mu$	$\tau \tau$	$\mu \mu \nu \nu$	$\mu \mu f f$
Before any restriction	8563	8.5M	8.6M	425k	710k
+ Both μ identified	8169.5 (95.4\%)	143k (1.7\%)	257k (3.0\%)	374 k (88.1\%)	$\begin{aligned} & 432 \mathrm{k}(60.9 \%) \\ & 48 \mathrm{k}(6.7 \%) \end{aligned}$
+ pre-cuts	7166 (83.7\%)		18k (0.2\%)	53k (12.6\%)	
$+P_{\text {Tdl }}>20 \mathrm{GeV}$	6777 (79.1\%)	71k (0.81\%)	12k (0.14\%)	46k (10.8\%)	38k (5.4\%)
$+M_{d l} \in(80,100) G e V$	6230 (72.7\%)	54k (0.64\%)	6578 (0.08\%)	27k (6.4\%)	30k (4.2\%)
+ acop $\in(0.2,3.0)$	5827 (68.0\%)	45k (0.53\%)	0 (0\%)	25k (6.0\%)	27k (3.8\%)
$+\Delta P_{\text {Tbal. }}>10 \mathrm{GeV}$	5712 (66.7\%)	2618 (0.03\%)	0 (0\%)	23k (5.5\%)	25k (3.6\%)
$+\left\|\Delta \theta_{2 t k}\right\|>0.01$	5704 (66.6\%)	1044 (0.01\%)	0 (0\%)	23k (5.4\%)	25k (3.6\%)
$+M_{\text {recoil }} \in(115,150) \mathrm{GeV}$	5553 (64.8\%)	761 (0.009\%)	0 (0\%)	16k (3.8\%)	15.5k (2.2\%)

Table 13: Number of events remained after each cuts for $\mu \mu \mathrm{X}$, Polarization $\mathrm{e}_{\mathrm{R}}^{+} \mathrm{e}_{\mathrm{L}}^{-}$.

$\mathrm{N}_{\text {evts }}$ Remained:	$e e X$	$e e$	$\tau \tau$	$e e \nu \nu$	$e e f f$
Before any restriction	8588	8.7 G	8.6 M	508 k	2.2 M
+ Both μ identified	$8791(98.3 \%)$		$965 \mathrm{k}(11.3 \%)$	$415 \mathrm{k}(81.7 \%)$	$880 \mathrm{k}(40.0 \%)$
+ pre-cuts	$5593(62.5 \%)$	$267 \mathrm{k}(0.003 \%)$	$29 \mathrm{k}(0.34 \%)$	$61 \mathrm{k}(12.1 \%)$	$41 \mathrm{k}(1.8 \%)$
$+P_{\text {Tdl }}>20 \mathrm{GeV}$	$5283(59.1 \%)$	$195(0.002 \%)$	$20 \mathrm{k}(0.24 \%)$	$53 \mathrm{k}(10.4 \%)$	$35 \mathrm{k}(1.6 \%)$
$+M_{d l} \in(80,100) \mathrm{GeV}$	$4508(50.4 \%)$	$108(0.001 \%)$	$12(0.14 \%)$	$29 \mathrm{k}(5.8 \%)$	$25 \mathrm{k}(1.1 \%)$
+ acop $\in(0.2,3.0)$	$4211(47.1 \%)$	$98 \mathrm{k}(0.001 \%)$	$866(0.01 \%)$	$28(5.4 \%)$	$23 \mathrm{k}(1.0 \%)$
$+\Delta P_{\text {Tbal. }}>10 \mathrm{GeV}$	$4095(45.8 \%)$	$6618\left(8 \times 10^{-7}\right)$	$606(0.007 \%)$	$24 \mathrm{k}(4.7 \%)$	$22 \mathrm{k}(0.98 \%)$
$+\left\|\Delta \theta_{2 t \mathrm{k}}\right\|>0.01$	$4089(45.7 \%)$	$3660\left(4 \times 10^{-7}\right)$	$519(0.006 \%)$	$23.5 \mathrm{k}(4.6 \%)$	$21.5 \mathrm{k}(0.98 \%)$
$+M_{\text {recoil }} \in(115,150) \mathrm{GeV}$	$3960(44.3 \%)$	$2706\left(3 \times 10^{-7}\right)$	$260(0.003 \%)$	$16.5 \mathrm{k}(3.3 \%)$	$13 \mathrm{k}(0.59 \%)$

Table 14: Number of events remained after each cuts for eeX, Polarization $e_{R}^{+} e_{L}^{-}$.

MI Rejection

$\mathrm{N}_{\text {evts }}$ Remained:	$\mu \mu X$	$\mu \mu$	$\tau \tau$	$\mu \mu \nu \nu$	$\mu \mu f f$
Before any restriction	5484	6.4 M	6.4 M	22.5 k	629.6k
+ Both μ identified	5248 (95.7\%)	93k (1.5\%)	193k (3.0\%)	17.8k (79.2\%)	$\begin{aligned} & 363(57.6 \%) \\ & 26 \mathrm{k}(4.2 \%) \end{aligned}$
+ pre-cuts	4620 (84.2\%)		13k (0.21\%)	3883 (17.3\%)	
$+P_{T d l}>20 \mathrm{GeV}$	4380 (79.9\%)	47k (0.74\%)	9041 (0.14\%)	3478 (15.5\%)	19k (3.1\%)
$+M_{d l} \in(80,100) \mathrm{GeV}$	4046 (73.8\%)	36k (0.56\%)	4943 (0.08\%)	2692 (12.0\%)	14k (2.2\%)
+ acop $\in(0.2,3.0)$	3771 (68.8\%)	29k (0.46\%)	0 (0\%)	2492 (11.1\%)	13k (2.0\%)
$+\Delta P_{\text {Tbal. }}>10 \mathrm{GeV}$	3697 (67.4\%)	1701 (0.027\%)	0 (0\%)	2421 (10.8\%)	11.8k (1.9\%)
$+\left\|\Delta \theta_{2 t k}\right\|>0.01$	3692 (67.3\%)	710 (0.011\%)	0 (0\%)	2392 (10.6\%)	11.7k (1.9\%)
$+M_{\text {recoil }} \in(115,150) \mathrm{GeV}$	3605 (65.7\%)	518 (0.008\%)	0 (0\%)	1452 (6.5\%)	7309 (1.2\%)

Table 15: Number of events remained after each cuts for $\mu \mu \mathrm{X}$, Polarization $\mathrm{e}_{\mathrm{L}}^{+} \mathrm{e}_{\mathrm{R}}^{-}$.

$\mathrm{N}_{\text {evts }}$ Remained:	$e e X$	$e e$	$\tau \tau$	$e e \nu \nu$	$e e f f$
Before any restriction	5645	8.7 G	6.4 M	35200	2.1 M
+ Both μ identified	$5544(98.2 \%)$		$725 \mathrm{k}(11.3 \%)$	$22 \mathrm{k}(61.4 \%)$	$773 \mathrm{k}(36.8 \%)$
	$3534(62.6 \%)$	$241 \mathrm{k}(0.0028 \%)$	$22 \mathrm{k}(0.34 \%)$	$3998(11.4 \%)$	$21 \mathrm{k}(1.0 \%)$
+ pre-cuts	$3334(59.1 \%)$	$182 \mathrm{k}(0.002 \%)$	$15 \mathrm{k}(0.24 \%)$	$3562(10.1 \%)$	$18(0.8 \%)$
$+P_{\text {Tdl }}>20 \mathrm{GeV}$	$2845(50.4 \%)$	$98 \mathrm{k}(0.001 \%)$	$8781(0.14 \%)$	$2495(7.1 \%)$	$12 \mathrm{k}(0.57 \%)$
$+M_{d l} \in(80,100) \mathrm{GeV}$	$2673(47.4 \%)$	$89 \mathrm{k}(0.001 \%)$	$650(0.01 \%)$	$2317(6.6 \%)$	$11 \mathrm{k}(0.52 \%)$
+ acop $\in(0.2,3.0)$	$2606(46.2 \%)$	$5984\left(7 \times 10^{-7}\right)$	$455(0.007 \%)$	$2221(6.3 \%)$	$10 \mathrm{k}(0.48 \%)$
$+\Delta P_{\text {Tbal. }}>10 \mathrm{GeV}$	$2602(46.1 \%)$	$3307\left(4 \times 10^{-7}\right)$	$390(0.006 \%)$	$2191(6.2 \%)$	$10 \mathrm{k}(0.48 \%)$
$+\left\|\Delta \theta_{2 t \mathrm{k}}\right\|>0.01$	$2457\left(3 \times 10^{-7}\right)$	$195(0.003 \%)$	$1339(3.8 \%)$	$6119(0.29 \%)$	
$+M_{\text {recoil }} \in(115,150) \mathrm{GeV}$	$2511(44.5 \%)$	$2457(3)$			

Table 16: Number of events remained after each cuts for eeX, Polarization $e_{L}^{+} e_{R}^{-}$.

