

Higgs Recoil Mass and Cross Section Analysis at ILD_00

Hengne Li

LAL Orsay, B. P. 34, 91898 Orsay Cedex,

France

1

2009-FEB-16 HENGNE LI@LAL

OUTLINE

- Introductory Remarks
- Preparations
 - Lepton ID
 - ΔP/P² Criterion of Tracks
 - Fitting Formulas
- Background Rejection
 - Rejection by Cuts
 - Assume SM Higgs Decay (SM)
 - Independent of Higgs Decay Model (MI)

2

ILD MEETING, SEOUL, FEB 2009

- Further Rejection by Likelihood
- Fittings and Results
- Conclusions

2009-FEB-16 HENGNE LI@LAL

Introductory Remarks

ZH Recoil Ana. Group:

(EU) Hengne Li, Roman Poeschl, Francois Richard, Manqi Ruan, Zhiqing Zhang (JP) Kazutoshi Ito, Yosuke Takubo, Hitoshi Yamamoto

3

Reviewers:

2009-FEB-16

(EU) Klaus Desch, (JP) Akiya Miyamoto

- Higgs Recoil Mass:

$$m_{h^0}^2 = s + m_{Z^0}^2 - 2E_{Z^0}\sqrt{s}$$

HENGNE LI @ LAL

- Cross Section and Coupling Strength Measurement:

$$g^2 \propto \sigma = N/\mathcal{L} e$$

- Mh = 120 GeV

- Ecm = 250 GeV
- Beam Energy Spread: 0.3% for each beam
- Luminosity: 500 fb-1 in Analysis 250 fb-1 results will also be reported
 - as requested by the ILD LOI
- Detector Model: ILD_00
- Event Generation: SLAC
- Simulation & Reconstruction: DESY & KEK
 - ILD MEETING, SEOUL, FEB 2009

Introductory Remarks

	E	₽ ⁺ R ^{e-} L			
	e+: +	1.0, e-: -1.0			
[Reactions	Cross-Section			
	$\mu\mu X$	17.1 fb			
	$\mu\mu$	17.1 pb (330.4 fb)			
	au au	17.1 pb			
uuΧ	μμνν	849.0 fb			
P P 2	$\mu\mu\mu\mu$	11.4 fb			
	$\mu\mu ee$	1106.7 fb			
	$\mu\mu au au$	23.1fb			
	$\mu\mu$ qq	277.7 fb			
r	D				
	Reactions	Cross-Section			
1.11	eeX	17.9 fb			
	ee	17.3 nb (733.9 fb)			
ΔΟΧ	au au	17.1 pb			
CCA	$ee\nu\nu$	1015.6 fb			
	$ee\mu\mu$	1106.7 fb			
	eeee	995.6 fb			
	ee au au	965.1 fb			
	eeqq	1366.5 fb			

2009-FEB-16

e⁺ _L e⁻ _R										
e+: -1.0, e-: +1.0										
Reactions	Cross-Section									
$\mu\mu X$	10.97 fb									
$\mu\mu$	12.9 pb (215.6 fb)									
au au	12.9 pb									
μμνν	45.0 fb									
$\mu\mu\mu\mu$	7.2 fb									
$\mu\mu ee$	1088.6 fb									
$\mu\mu au au$	14.7 fb									
$\mu\mu$ qq	148.6 fb									
Reactions	Cross-Section									
eeX	11.29 fb									
ee	17.3 nb (658.9 fb)									
au au	12.9 pb									
$ee\nu\nu$	27.5 fb									
$ee\mu\mu$	1088.6 fb									
eeee	982.4 fb									
ee au au	948.8 fb									
eeaa	1168.9 fb									

4

Pre-cuts for ee and μμ: (cross-sections after pre-cuts are in blankets)

Pre-cuts for $\mu\mu$:

- $M_{\mu^+\mu^-} \in (71.18, 111.18) \; GeV$
- $P_{T\mu^+\mu^-} > 10 \ GeV$
- $M_{recoil} \in (105, 165) \; GeV$

Pre-cuts for *ee*:

- $\bullet \ |cos\theta_{e^+/e^-}| < 0.95$
- $M_{e^+e^-} \in (71.18, 111.18) \ GeV$
- $P_{Te^+e^-} > 10 \ GeV$
- $M_{recoil} \in (105, 165) \ GeV$

 (1) μμνν and eevv have major contribution from WW, but also from ZZ.
 (2) In the analysis, μμff refers to μμee + μμμμ + μμττ + μμqq, and eeff refers to eeμμ + eeee + eeττ + eeqq

HENGNE LI @ LAL

Preparation 1: Lepton ID

- Refer to the study of Hajrah Tabassam, from discussions with Roberval Walsh, we define our cuts for lepton ID as:
 - $\frac{\text{muon ID}}{E_{ecal}/E_{total} < 0.5}$ $\frac{E_{cal}}{P_{track}} < 0.3$

HENGNE LI @ LAL

Pol. for ill

2009-FEB-16

 $\frac{\text{electron ID}}{E_{ecal}/E_{total} > 0.6}$ $\frac{E_{cal}}{P_{track} > 0.9}$

	Cuts (for P>15GeV): single particle	μμΧ (muon ID)	eeX (electron ID)	
	N _{true} (N truth)	31833	34301	
(e+ _R e- _L) ustration	N _{true∩iden}	31063	33017	
	N _{iden}	33986	34346	
	Efficiency (N _{true∩iden} /N _{true})	97.6%	96.3%	
	Purity (N _{true∩iden} /N _{iden})	91.4%	96.1%	
	Efficiency Both lepton ID: (no P request, select according to Mz)	95.4%	98.8%	

We dropped the improvements on the two muon ID applied in previous study, which is to search for the other muon from tracks if only one muon identified, (refer to my previous reports).

5

Preparation 2: $\Delta P/P^2$ criterion in the selection of lepton candidates

6

Preparation 3: Fitting Methods

□ Two methods applied for the signal:

Gaussian Peak Exponential Tail (GPET)

$$f(x) = N \begin{cases} e^{-\frac{(x-x_0)^2}{2\sigma^2}} & : \frac{x-x_0}{\sigma} \le k \\ \beta e^{-\frac{(x-x_0)^2}{2\sigma^2}} + (1-\beta)e^{-(x-x_0)\frac{k}{\sigma}}e^{\frac{k^2}{2}} & : \frac{x-x_0}{\sigma} > k \end{cases}$$

ILD MEETING, SEOUL, FEB 2009

□ Convolution of Empirical with Gaussian (CEG)

$$F(x) = Ne^{-Ax} \int_{x_0-x}^{\sqrt{s-x}} F_H(x+t) e^{-\frac{t^2}{2\sigma^2}} dt;$$

7

$$F_H(x) = \left(\frac{x - x_0}{\sqrt{s} - x_0}\right)^{\beta - 1}$$

Background:

Polynomial with 3 coefficients

2009-FEB-16 HENGNE LI @ LAL

Analysis Procedures

Higgs Decay Model	SM Higgs Decay	Model Independent					
Background	SM Cut-chain	MI Cut-chain					
Rejection	Likelihood Further Rej.	Likelihood Further Rej.					
Fitting							

- Background Rejection
 - Rejection by Cuts
 - SM Cut-Chain: Assume SM Higgs Decay
 - MI Cut-Chain: Independent of Higgs Decay Model

8

ILD MEETING, SEOUL, FEB 2009

- Further Rejection by Likelihood
- Fitting and Results

2009-FEB-16 HENGNE LI@LAL

BKG Rejection by Cuts: SM Cut-Chain

 For SM Higgs decay, multiplicity in the final states is the most efficient criterion to reject the 2f and WW
 Pol. (e⁺_Re⁻_L) for illustration

9

- In order to keep the H->ττ in the signals :
- At most: Ntks>1

2009-FEB-16

- How to reject evts with Ntks=2 in μμ, ττ and WW ?
- Define $\Delta \theta_{2tk}$: $\Delta \theta$ between these two additional tracks for Ntks=2.

HENGNE LI @ LAL

Pol. (e⁺_Re⁻_L) for illustration

2009-FEB-16

Nevts remained: ΖΗ->μμΧ ee->µµvv ее->тт μμΧ ee->µµ 8563 8.5M 425k before any restriction: 8.6M Both µ identified 8169 (95.4%) 257k (3%) 374k(88.1%) 143k (1.7%) 7166 (83.7%) 17k (0.2%) 54k (12.6%) + pre-cuts + Ntks>1 7112 (83.0%) 8.8k (0.10%) 2k (0.025%) 959 (0.23%) + $|\Delta \theta_{2tk}| > 0.01$ 7100 (82.9%) 819 (0.01%) 1558 (0.02%) 122 (0.03%) 18 (0.004%) + $|\Delta \theta_{min}| > 0.01$ 7000 (81.7%) 506 (0.006%) 346 (0.004%) 0 (0%) 18 (0.004%) + a cop (0.2, 3.0)6495(75.8%) 354 (0.004%) 16 (0.004%) + Mh (115, 150) GeV 6130(71.6%) 229 (0.003%) 0 (0%) ZH->eeX **Nevts remained:** ee->ee ee->tt ee->eevv eeX 8588 8.7G before any restriction: 8.6M 508k Both e identified: 8439 (98.3%) 965k(11.3%) 415k (81.6%) 267k (0.003%) + pre-cuts 5593 (62.5%) 29k (0.3%) 61k (12.1%) + Ntks>1 : 5548 (62.0%) 16k (2×10⁻⁶) 8309 (0.1%) 1708 (0.34%) + $|\Delta \theta_{2tk}| > 0.01$ 5540 (61.9%) 2607 (3×10⁻⁷) 5885 (7×10⁻⁴) 279 (0.05%) 5448 (60.9%) + $|\Delta \theta_{min}| > 0.01$ 844 (1×10⁻⁷) 1212(1×10⁻⁴) 31 (0.006%) 0 (0%) + a cop (0.2, 3.0)5054 (56.5%) 712 (8×10⁻⁸) 30 (0.006%) + Mh (115, 150) GeV 4631 (51.8%) 456 (5×10⁻⁸) 0 (0%) 11 (0.002%)

HENGNE LI @ LAL

BKG Rejection by Cuts:

 SM Cut-Chain

 ee->TT
 Nevts are weighted according to the cross-sections and luminosity 500 fb⁻¹

- Seems $\Delta \theta_{2tk}$ is not enough
- Define $\Delta \theta_{min}$:
- the smallest Δθ between the additional tracks and the muon candidates

 Because mis-identification of other particles to be muons/ electrons

BKG Rejection by Cut^{10²} MI Cut-Chain^{10⁴}

 muon channel with pol. e⁺₅₀ for illustration μμ are pre-cutted (GeV)

μμΗ μμ

μμff μμνν

• Cuts, based on lepton pair properties:

• $P_{Tdl} > 20 \ GeV$

HENGNE LI @ LAL

• $M_{dl} \in (80, \ 100) \ GeV$

Pol. e⁺_Re⁻_L for illustration

2009-FEB-16

μ

e

• $acop \in (0.2, 3.0)$

	Nevts remained: ZH->µµX		ee->µµ	ее->тт	ee->µµvv	ee->µµff	1	
X	before any restriction:	8563		8.5M	8.6M	425k	710k	
	Both μ id + pre-cuts	7166 (83.7%)		143k (1.7%)	17k (0.2%)	54k (12.6%)	48k (6.7%)	
	+ P _{Tdl} > 20 GeV	6777(79.1%)		71k(0.81%)	12k(0.14%)	46k(10.8%)	38k(5.4%)	
	+ $M_{dl} \in$ (80, 100) GeV	6230(72.7%)		54k(0.64%)	6578(0.08%)	27k(6.4%)	30k(4.2%)	
	+ acop (0.2, 3.0)	5827(68.0%)	5827(68.0%)		0(0%)	25k(6.0%)	27k(3.8%)	
X	Nevts remained:	ZH->eeX	ee	e->ee	ее->тт	ee->eevv	ee->eeff	1
	before any restriction:	8588	8.	7G	8.6M	508k	2.2M	
	Both e id + pre-cuts	5593 (62.5%)	26	67k (0.003%)	29k (0.3%)	61k (12.1%)	41k (1.8%)]
	+ P _{Tdl} > 20 GeV	5283 (59.1%) 19		95 (0.002%)	20k (0.24%)	53k (10.4%)	35k (1.6%)]
	+ $M_{dl} \in$ (80, 100) GeV	4508 (50.4%) 10		08 (0.001%)	12 (0.14%)	29k (5.8%)	25k (1.1%)	
	+ acop (0.2, 3.0)	4211 (47.1%)	98	3k (0.001%)	866 (0.01%)	28k (5.4%)	23k (1.0%)	

Normalized a.u.

1

10⁻¹

10-2

10⁻³

10-4

Normalized a.u. 10.1 10.5

10⁻³

BKG Rejection by Cuts: Independent of Higgs Decay Model

NEW!

ISR P_T balance for $\mu\mu$ and ee rejection

Idea: (Thanks to Francois' idea)

- For μμ and ee: P_T of ISR photon should balance the P_T of di-lepton system;
- For signal: Impossible to have ISR to balance Z P_T, independent of Higgs decay model.

Requirements:

2009-FEB-16

- $M_{dl} \in (80, 100)$ GeV: large FSR events are removed
- P_{Tdl} > 20 GeV: Large P_T ISR photon can be detected

HENGNE LI @ LAL

Reduces µµ and ee further by 1 to 2 orders of magnitude Signal lost: ~1%

ISR photon conversions

BKG Rejection by Cuts: Independent of Higgs Decay Model

To reject the ISR Photon conversions:

- Cut $|\Delta \theta_{2tk}| > 0.01$: Only apply on events with 2 additional tracks
- Reject µµ and ee Further by a factor of 2.

Pol. e⁺_Re⁻_L for illustration

μμ)

eeX

	Nevts remained:	ΖΗ->μμΧ	ee->µµ	ее->тт	ee->µµvv	ee->µµff
<	before any restriction:	8563	8.5M	8.6M	425k	710k
	cuts applied before	5827(68.0%)	45k(0.53%)	0(0%)	25k(6.0%)	27k(3.8%)
	+ $\Delta P_{Tbal.}$ > 10 GeV	5712(66.7%)	2618(0.03%)	0(0%)	23k(5.5%)	25k(3.6%)
	+ ΙΔθ _{2tk} l>0.01	5704(66.6%)	1044(0.01%)	0(0%)	23k(5.4%)	25k(3.6%)
	+ Mh (115, 150) GeV	5553(64.8%)	761(0.009%)	0(0%)	16k(3.8%)	15.5k(2.2%)

Nevts remained:	ZH->eeX	ee->ee	ее->тт	ee->eevv	ee->eeff	
before any restriction:	8588	8.7G	8.6M	508k	2.2M	
cuts applied before	4211 (47.1%)	98k (0.001%)	866 (0.01%)	28 (5.4%)	23k (1.0%)	
+ $\Delta P_{Tbal.}$ > 10 GeV	4095 (45.8%)	6618 (8×10 ⁻⁷)	606 (0.007%)	24k (4.7%)	22k (0.98%)	
+ $ \Delta \theta_{2tk} $ >0.01	4089 (45.7%)	3660 (4×10 ⁻⁷)	519 (0.006%)	23.5k (4.6%)	21.5k (0.98%)	
+ Mh (115, 150) GeV	3960 (44.3%)	2706 (3×10-7)	260 (0.003%)	16.5k (3.3%)	13k (0.59%)	

2009-FEB-16 HENGNE LI@LAL

BK Further Rejection by Likelihood

Background Rejection Summary Table

Ana.	Pol.	Ch.	Cuts	μμX/eeX	μµ/ee	тт	μμνν/eevv	µµff/eeff	S/B	S/√(S+B)
			SM cut-chain:	6130(71.6%)	229	0	16	21.9k		
	e ⁺ _R	μ	+ f _L >0.31	5116(59.7%)	63	0	7	11.3k	0.45	39.8
	e⁻∟	-	SM cut-chain:	4631(51.8%)	456	0	11	20.2k		
SM	<u>.</u>	е	+ f _L >0.33	3939(44.0%)	180	0	6	10.5k	0.37	32.6
21.1			SM cut-chain:	3947(72.0%)	146	0	0	11.0k		
	e ⁺ L	μ	+ f _L >0.27	3435(62.6%)	31	0	0	5.3k	0.64	36.7
	e⁻ _R	0	SM cut-chain:	3947(72.0%)	338	0	2	9.9k		
		е	+ f _L >0.30	2480(43.9%)	112	0	0	4.7k	0.52	29.0
			MI cut-chain:	5553(64.8%)	761	0	16k	15.5k		
	e^+R	μ	+ f _L >0.19	4600(53.7%)	471	0	8244	9297	0.26	30.6
	e⁻∟	0	MI cut-chain:	3960(44.3%)	2706	260	16.5k	13k		
MI		е	+ f _L >0.17	3374(37.7%)	1524	260	9403	8175	0.17	22.4
PH			MI cut-chain:	3605(65.7%)	518	0	1452	7309		
	e ⁺ L	μ	+ f _L >0.24	3208(58.5%)	362	0	1075	4563	0.53	33.4
	e⁻ _R	0	MI cut-chain:	2511(44.5%)	2457	195	1339	6119		
		e	+ f _L >0.29	2154(38.2%)	1463	195	837	3439	0.36	24.0

15

2009-FEB-16

HENGNE LI @ LAL

Fittings

16

My Favorite Fitting I: (GPET)

M Higgs : 119.981 ± 0.50 GeV Cross-Section: 11.31 ± 0.39 fb (0.34%)

My Favorite Fitting II: (CEG)

M Higgs : 120.069 ± 0.51 GeV Cross-Section: 11.33 ± 0.39 fb (3.4%)

Mass Resolution vs. Beam Energy Spread

An Important Issue, before give you all the results:

 The Mass Resolution introduced by Beam Energy Spread (0.3% for each beam), is larger than we expected.

By (Gaussian) fitting the left side of the Mass Peak of:

- the Generator Data: ΔM_{beam} = 730 MeV
- the Simulation Data: ΔM_{total} = 870 MeV

 $\Delta M_{total} = \Delta M_{beam} \oplus \Delta M_{detector}$ $\Rightarrow \Delta M_{detector} = 470 \text{ MeV}$

Which means: The Machine Introduced more inaccuracy into the Recoil Mass measurement than our ILD Detector! In reporting the results: I Will Separate the Stat. Err. of Mh into δMbeam and δMdetector accordingly.

Results Summary Table

Results in Blue: according to 500 fb⁻¹, Results in Red: according to 250 fb⁻¹, as requested by the ILD LOI.

HENGNE LI @ LAL

2009-FEB-16

A	Pol.	Ch.	M _h stat. err. (MeV)						Cross-Section		C/D		
Ana.			δΜ	total	δΜ	beam	δM _d	etector	stat. err. <mark>(%)</mark>		3/D	5/√(5тв)	
	0 ⁺ - 0 ⁻	μ	44	62	37	52	24	34	3.1	4.4	0.45	39.8	
CM	erel	е	72	102	54	76	47	66	4.4	6.2	0.37	32.6	
311	e⁺ _L e⁻ _R	μ	50	71	42	59	27	38	3.4	4.8	0.64	36.7	
		е	82	116	62	88	54	76	4.8	6.8	0.52	29.0	
	o ⁺ - o ⁻ -	μ	49	69	41	58	27	38	3.8	5.4	0.26	30.6	
MI	erel	е	100	141	75	106	66	93	5.2	7.4	0.17	22.4	
1°II	e ⁺ Le ⁻ R	μ	52	74	44	62	28	40	3.7	5.2	0.53	33.4	
		е	112	158	84	119	73	103	5.8	8.2	0.36	24.0	

- The Stat. Err. of M_h is separated into δM_{beam} and $\delta M_{detector}$ according to the ΔM_{beam} and $\Delta M_{detector}$, (different for $\mu\mu X$ and eeX; for eeX, ΔM_{total} = 970 MeV, ΔM_{beam} = 730 MeV and $\Delta M_{detector}$ = 640 MeV)
- Stat. Err.s of Cross-Section are reported relatively (in %), since the cross-sections are different between two polarization setups

Conclusions and To Do List

Conclusions

- Analyses are done and methods are validated for µµX and eeX channels, with full polarizations.
- Both fitting methods give the similar good results
- Machine introduced larger error into the Higgs mass measurement than the ILD Detector
- Mh stat. err.s are separated into machine contributions and detector contributions : Helpful for the detector performance study

To Do List

- Results with LOI requested polarizations (e:+80%, p:-30%) and (e:-80%, p:+30%) will be given as soon as possible.
- Up to now, no gamma-gamma backgrounds taken into the fittings: results are coming soon.

Kazutoshi is going to give the talk about the gamma-gamma rejection next.

2009-FEB-16 HENGNE LI@LAL

21

Backup Slides

23

2009-FEB-16 HENGNE LI@LAL

$\Delta P/P^2$ criterion in the selection of lepton candidates

- Protect our study from bad measured tracks
- ΔP/P² criterion for our lepton candidates is applied
 - With Francois' directions and validations step by step

P (GeV)

2009-FEB-16 HENGNE LI @ LAL

Background Rejection Summary Table

Pol.	Ana.	Cha.	Cuts	μμX/eeX	μµ/ee	тт	μμνν/eevv	µµff/eeff	S/B	$S/\sqrt{(S+B)}$
			SM cut-chain:	6130(71.6%)	229	0	16	21.9k		
	CM	μ	+ fL>0.31	5116(59.7%)	63	0	7	11.3k	0.45	39.8
	2141		SM cut-chain:	4631(51.8%)	456	0	11	20.2k		
e+R		е	+ fL>0.33	3939(44.0%)	180	0	6	10.5k	0.37	32.6
e-L			MI cut-chain:	5553(64.8%)	761	0	16k	15.5k		
	мі	μ	+ fL>0.19	4600(53.7%)	471	0	8244	9297	0.53	33.4
	1.11	e	MI cut-chain:	3960(44.3%)	2706	260	16.5k	13k		
			+ fL>0.17	3374(37.7%)	1524	260	9403	8175	0.36	24.0
			SM cut-chain:	3947(72.0%)	146	0	0	11.0k		
	SM	μ	+ fL>0.27	3435(62.6%)	31	0	0	5.3k	0.26	30.6
	511	0	SM cut-chain:	3947(72.0%)	338	0	2	9.9k		
e+L		e	+ fL>0.30	2480(43.9%)	112	0	0	4.7k	0.17	22.4
e-R			MI cut-chain:	3605(65.7%)	518	0	1452	7309	al solo	
	мі	μ	+ fL>0.24	3208(58.5%)	362	0	1075	4563	0.64	36.7
		P	MI cut-chain:	2511(44.5%)	2457	195	1339	6119	at shi	
		C	+ fL>0.29	2154(38.2%)	1463	195	837	3439	0.52	29.0

25

2009-FEB-16

HENGNE LI @ LAL

	Щ				Ш	40				
	50)				20				
	C) 120	130	140 M _{higgs}	(Ge rte S	ults	20 130	140 M _{higgs} (150 (GeV)	
	Higgs Rec	oil Mass Spectrum, μ	u channel, s=2500	GeV, ILD_00	Higg	s Recoil Mass Sp	ectrum, e channel, s=250GeV	, ILD_00		
	0.5) (0.5))		Data Signal	\$/(0.2)	250 200		Data Signal Backgrounds		
	ents	Pol	Ch	Backgrounds Fit.	M _b (Ge	150	Cross-Sectio	on (fb)	7	
	丘 100	$e_{\rm R}^+ e_{\rm L}^-$	$\mu\mu X$	GPET CEG	$119.977 \pm 120.158 \pm$	100 044 0.046	$\frac{17.15 \pm 0.54}{17.21 \pm 0.54}$	$\frac{1}{4} (3.1\%)$	-	
Μ	C	120	eeX 130	GPET CE _l Go	$119.954 \pm 1200226 \pm 120026 \pm 1200226 \pm 120026 \pm 120020026 \pm 120020026 \pm 120020026 \pm 120020000000000000000000000000000$	0.072 0.078 ₁	18.38 ± 0.81 2018.35 ± 30.80	(4.4%) $(4_{140}\%)$	150	
		$e_{\rm L}^+ e_{\rm R}^-$	$\mu\mu X$	GP Things CEG	$(G_{PV9.981} \pm 120.069 \pm$	$0.050 \\ 0.051$	$\frac{11.31 \pm 0.39}{11.33 \pm 0.39}$	(3.4%)	(GeV)	
			eeX	GPET CEG	$119.997 \pm 120.021 \pm$	0.084	11.46 ± 0.55 11.41 ± 0.55	5(4.8%)	-	
				OHO	120.021 1	0.002	11.41 ± 0.00	(4.070)		

Pol.	Ch.	Fit.	$M_h (GeV)$	Cross-Section (fb)
$e_R^+ e_L^-$	$\mu\mu X$	GPET	119.938 ± 0.049	$16.75 \pm 0.65 \; (3.9\%)$
		CEG	120.073 ± 0.054	$16.73 \pm 0.64 \; (3.8\%)$
	eeX	GPET	120.094 ± 0.110	$20.29 \pm 1.06 \ (5.3\%)$
		CEG	120.286 ± 0.100	$20.35 \pm 1.06 \ (5.3\%)$
$e_{\rm L}^+ e_{\rm R}^-$	$\mu\mu X$	GPET	120.004 ± 0.052	$11.24 \pm 0.42 \ (3.7\%)$
		CEG	120.102 ± 0.054	$11.05 \pm 0.41 \ (3.7\%)$
	eeX	GPET	119.981 ± 0.112	$10.79 \pm 0.63 \; (5.8\%)$
		CEG	119.922 ± 0.112	$10.77 \pm 0.63 \ (5.8\%)$

Μ

S

2009-FEB-16 HENGNE LI@LAL

SM Rejection

N _{evts} Remained:	$\mu\mu X$	$\mu\mu$	au au	μμνν
Before any restriction:	8563	$8.5\mathrm{M}$	8.6M	425k
Both μ identified	8169~(95.4%)		257k(3%)	374k (88.1%)
+ pre-cuts	7166~(83.7%)	143k (1.7%)	17k (0.2%)	54k (12.6%)
$+ N_{add.TK} > 1$	7112 (83.0%)	8.8k (0.10%)	2k (0.025%)	959~(0.23%)
$+\Delta\theta_{\rm 2tk} > 0.01$	7100~(82.9%)	819~(0.01%)	1558~(0.02%)	122~(0.03%)
$+\Delta\theta_{\min} > 0.01$	7000~(81.7%)	506~(0.006%)	346~(0.004%)	18~(0.004%)
$+ \operatorname{acop} (0.2, 3.0)$	6495(75.8%)	354~(0.004%)	0 (0%)	18~(0.004%)
$+ M_{h} (115, 150) \text{ GeV}$	6130(71.6%)	229~(0.003%)	0 (0%)	16~(0.004%)

Table 4: Number of events remained after each cuts for $\mu\mu X$, Polarization $e_R^+ e_L^-$

N _{evts} Remained:	eeX	ee	au au	$ee\nu\nu$
Before any restriction:	8588	8.7G	$8.6\mathrm{M}$	508k
Both e identified	8439~(98.3%)		965k(11.3%)	415k (81.6%)
+ pre-cuts	5593~(62.5%)	267k (0.003%)	29k (0.3%)	61k (12.1%)
$+ N_{add.TK} > 1$	5548~(62.0%)	$16k (2 \times 10^{-6})$	8309~(0.1%)	1708~(0.34%)
$+\Delta\theta_{2tk} > 0.01$	5540~(61.9%)	$2607~(3 \times 10^{-7})$	$5885~(7 \times 10^{-4})$	279~(0.05%)
$+\Delta\theta_{\min} > 0.01$	5448~(60.9%)	$844~(1 \times 10^{-7})$	$1212 \ (1 \times 10^{-4})$	31~(0.006%)
$+ \operatorname{acop} (0.2, 3.0)$	5054~(56.5%)	$712~(8 \times 10^{-8})$	0 (0%)	30~(0.006%)
$+ M_{h} (115, 150) \text{ GeV}$	4631 (51.8%)	$456~(5 \times 10^{-8})$	0 (0%)	11~(0.002%)

Table 5: Number of events remained after each cuts for eeX, Polarization $e_R^+ e_L^-$

2009-FEB-16 HENGNE LI@LAL

SM Rejection

N _{evts} Remained:	$\mu\mu X$	$\mu\mu$	au au	μμνν
Before any restriction:	5484	$6.4\mathrm{M}$	6.4M	22.5k
Both μ identified	5248~(95.7%)		193k (3%)	17.8k(79.2%)
+ pre-cuts	4620 (84.2%)	93.5k~(1.5%)	13.4k (0.2%)	3883~(17.3%)
$+ N_{add.TK} > 1$	4592~(83.7%)	5680~(0.09%)	1626~(0.025%)	58~(0.26%)
$+\Delta\theta_{\rm 2tk} > 0.01$	4584~(83.6%)	526~(0.008%)	1171~(0.02%)	6 (0.03%)
$+\Delta\theta_{\min} > 0.01$	4513~(82.3%)	335~(0.005%)	260~(0.004%)	0 (0%)
$+ \operatorname{acop} (0.2, 3.0)$	4172 (76.1%)	249~(0.004%)	0 (0%)	0 (0%)
$+ M_h (115, 150) \text{ GeV}$	3947~(72.0%)	146~(0.002%)	0 (0%)	0 (0%)

Table 6: Number of events remained after each cuts for $\mu\mu X$, Polarization $e_L^+e_R^-$

N _{evts} Remained:	eeX	ee	au au	εενν
Before any restriction:	5645	8.7G	$6.4\mathrm{M}$	35.2k
Both e identified	5544 (98.2%)		725k(11.3%)	21.6k (61.3%)
+ pre-cuts	3534~(62.6%)	241k (0.003%)	22k (0.3%)	3999~(11%)
$+ N_{add.TK} > 1$	3503~(62.1%)	14.6k (1.7×10^{-6})	6244~(0.1%)	71~(0.2%)
$+\Delta\theta_{\rm 2tk} > 0.01$	3497~(61.9%)	$2216~(3 \times 10^{-7})$	4423~(0.07%)	8~(0.02%)
$+\Delta\theta_{\min} > 0.01$	3445~(61.0%)	$645~(7 \times 10^{-8})$	911~(0.01%)	2 (0.0006%)
$+ \operatorname{acop} (0.2, 3.0)$	3209~(56.9%)	$552~(6 \times 10^{-8})$	0 (0%)	2 (0.006%)
$+ M_h (115, 150) \text{ GeV}$	2935~(52.0%)	$338~(4 \times 10^{-8})$	0 (0%)	2 (0.006%)

Table 7: Number of events remained after each cuts for eeX, Polarization $e_L^+e_R^-$

2009-FEB-16 HENGNE LI@LAL

1 -100

-50

10

MI Rejection

N _{evts} Remained:	$\mu\mu X$	$\mu\mu$	au au	μμνν	$\mu\mu ff$
Before any restriction	8563	$8.5\mathrm{M}$	8.6M	425k	710k
+ Both μ identified	8169.5~(95.4%)		257k (3.0%)	374k (88.1%)	432k (60.9%)
+ pre-cuts	7166~(83.7%)	143k (1.7%)	18k (0.2%)	53k (12.6%)	48k (6.7%)
$+ P_{Tdl} > 20 \ GeV$	6777~(79.1%)	71k (0.81%)	12k (0.14%)	46k (10.8%)	38k(5.4%)
$+ M_{dl} \in (80, \ 100) \ GeV$	6230~(72.7%)	54k (0.64%)	6578~(0.08%)	27k (6.4%)	30k~(4.2%)
$+ a cop \in (0.2, 3.0)$	5827~(68.0%)	45k (0.53%)	0 (0%)	25k~(6.0%)	27k (3.8%)
$+\Delta P_{Tbal.} > 10 \ GeV$	5712~(66.7%)	2618~(0.03%)	0 (0%)	23k (5.5%)	25k (3.6%)
$ + \Delta\theta_{2tk} > 0.01$	5704~(66.6%)	1044~(0.01%)	0 (0%)	23k (5.4%)	25k (3.6%)
$+ M_{recoil} \in (115, 150) \ GeV$	5553~(64.8%)	761~(0.009%)	0 (0%)	16k (3.8%)	15.5k (2.2%)

Table 13: Number of events remained after each cuts for $\mu\mu X$, Polarization $e_R^+e_L^-$.

N _{evts} Remained:	eeX	ee	au au	ееνν	eeff
Before any restriction	8588	8.7G	8.6M	508k	2.2M
+ Both μ identified	8791 (98.3%)		965k (11.3%)	415k (81.7%)	880k (40.0%)
+ pre-cuts	5593~(62.5%)	267k (0.003%)	29k (0.34%)	61k (12.1%)	41k (1.8%)
$+ P_{Tdl} > 20 \ GeV$	5283~(59.1%)	195~(0.002%)	20k (0.24%)	53k(10.4%)	35k (1.6%)
$+ M_{dl} \in (80, \ 100) \ GeV$	4508~(50.4%)	108 (0.001%)	12 (0.14%)	29k (5.8%)	25k (1.1%)
$+ acop \in (0.2, 3.0)$	4211 (47.1%)	98k (0.001%)	866~(0.01%)	28 (5.4%)	23k (1.0%)
$+\Delta P_{Tbal.} > 10 \ GeV$	4095~(45.8%)	$6618 \ (8 \times 10^{-7})$	606~(0.007%)	24k (4.7%)	22k (0.98%)
$+ \Delta \theta_{2tk} > 0.01$	4089 (45.7%)	$3660 \ (4 \times 10^{-7})$	519~(0.006%)	23.5k (4.6%)	21.5k (0.98%)
$+ M_{recoil} \in (115, 150) \ GeV$	3960(44.3%)	$2706 (3 \times 10^{-7})$	260~(0.003%)	16.5k (3.3%)	13k (0.59%)

Table 14: Number of events remained after each cuts for eeX, Polarization $e_R^+e_L^-$.

2009-FEB-16 HENGNE LI@LAL

MI Rejection

N _{evts} Remained:	$\mu\mu X$	$\mu\mu$	au au	μμνν	$\mu\mu ff$
Before any restriction	5484	6.4M	6.4M	22.5k	629.6k
+ Both μ identified	5248~(95.7%)		193k (3.0%)	17.8k (79.2%)	363~(57.6%)
+ pre-cuts	4620 (84.2%)	93k (1.5%)	13k (0.21%)	3883~(17.3%)	26k (4.2%)
$+ P_{Tdl} > 20 \ GeV$	4380(79.9%)	47k (0.74%)	9041~(0.14%)	3478~(15.5%)	19k (3.1%)
$+ M_{dl} \in (80, \ 100) \ GeV$	4046~(73.8%)	36k (0.56%)	4943~(0.08%)	2692~(12.0%)	14k (2.2%)
$+ acop \in (0.2, 3.0)$	3771~(68.8%)	29k (0.46%)	0 (0%)	2492~(11.1%)	13k (2.0%)
$+ \Delta P_{Tbal.} > 10 \ GeV$	3697~(67.4%)	1701~(0.027%)	0 (0%)	2421~(10.8%)	11.8k (1.9%)
$+ \Delta \theta_{2tk} > 0.01$	3692~(67.3%)	710~(0.011%)	0 (0%)	2392~(10.6%)	11.7k(1.9%)
$+ M_{recoil} \in (115, \ 150) \ GeV$	3605~(65.7%)	518~(0.008%)	0 (0%)	1452~(6.5%)	7309~(1.2%)

Table 15: Number of events remained after each cuts for $\mu\mu X$, Polarization $e_L^+e_R^-$.

N _{evts} Remained:	eeX	ee	au au	eevv	eeff
Before any restriction	5645	8.7G	6.4M	35200	2.1M
+ Both μ identified	5544 (98.2%)		725k (11.3%)	22k (61.4%)	773k (36.8%)
+ pre-cuts	3534~(62.6%)	241k (0.0028%)	22k (0.34%)	3998~(11.4%)	21k (1.0%)
$+ P_{Tdl} > 20 \ GeV$	3334~(59.1%)	182k (0.002%)	15k (0.24%)	3562~(10.1%)	18~(0.8%)
$+ M_{dl} \in (80, \ 100) \ GeV$	2845~(50.4%)	98k (0.001%)	$8781 \ (0.14\%)$	2495~(7.1%)	12k (0.57%)
$+ acop \in (0.2, 3.0)$	2673~(47.4%)	$89k \ (0.001\%)$	650~(0.01%)	2317~(6.6%)	11k (0.52%)
$+\Delta P_{Tbal.} > 10 \ GeV$	2606~(46.2%)	$5984~(7 \times 10^{-7})$	455~(0.007%)	2221~(6.3%)	10k (0.48%)
$ + \Delta\theta_{2tk} > 0.01$	2602~(46.1%)	$3307~(4 \times 10^{-7})$	390~(0.006%)	2191~(6.2%)	10k (0.48%)
$+ M_{recoil} \in (115, 150) \ GeV$	2511 (44.5%)	$2457~(3 \times 10^{-7})$	195~(0.003%)	1339~(3.8%)	6119~(0.29%)

Table 16: Number of events remained after each cuts for eeX, Polarization $e_L^+ e_R^-$.

2009-FEB-16 HENGNE LI@LAL