$ZH ightarrow qar{q}car{c}$ study with neural network

David Ward and Wenbiao Yan

- introduction
- jet resolution
- c-tag
- neural network @ ZH
- $Br(H \rightarrow c\bar{c})$

Higgs decay

• Higgs branching ratio $Br(h \rightarrow c\bar{c})$ @ $M_h = 120$ GeV

• extract $\frac{\Delta\sigma(ZH \rightarrow q\bar{q}c\bar{c})}{\sigma(ZH \rightarrow q\bar{q}c\bar{c})}$ and $\frac{\Delta Br(H \rightarrow c\bar{c})}{Br(H \rightarrow c\bar{c})}$

MC data samples @ 250 GeV

- signal events $q\bar{q}H \rightarrow q\bar{q}c\bar{c}$ and background events $q\bar{q}$ and $q\bar{q}q\bar{q}$
 - DESY DST files: (e^+, e^-) polarization; (1.0, -1.0) and (-1.0, 1.0)
 - combine it for polarization (0.3, -0.8)
- detector model ILD00 and event reconstruction ilcinstall v01-06
- kinematic fitting MarlinKinfit @ analysis \rightarrow jet resolution
 - $q\bar{q}$ at 20/40/80/91.2/120/160/200/240/300 GeV
 - q = u, d, s, c: 20K; q = b: 10K
- event selection with neural network
 - 100K $q\bar{q}c\bar{c}$ events

Jet resolution

- jets finding at hadron level: MC stable particles without neutrinos
- jets finding at detector level
- jet's energy: mean value $\sim 0.8\%$
- jet's angle: mean value ~ 0.0

Jet resolution

• $e^+e^- \rightarrow q\bar{q}$ events without ISR

- jets finding at hadron level: MC stable particles without neutrinos
- jets finding at detector level

jet resolution @ $car{c}h$ events

- kinematic fitting
 - energy-momentum conservation and two jets from Z^0 : $M_{j1j2} = M_Z$
- check jet resolution by pull variables
 - $PULL(x) = (x_{meas} x_{fit})/(\sqrt{\sigma_{meas}^2 \sigma_{fit}^2})$

b-tag/c-tag at ZH 250GeV

- b-tag, c-tag and bc-tag from LCFIvertex package
- $ZH \rightarrow q\bar{q}H$ events with (e^+, e^-) polarization (1.0, -1.0)

neural network: 17 used variables

- total visible energy; PFA number; y_{34} ;
- thrust; theta of thrust axis; sphericity; aplanarity; Fox-Wolfram moments h_{30} and h_{40}
- χ^2 probability and fitted Higgs mass of 4C $\otimes M_{j_1j_2} = 91.20$ GeV fitting; χ^2 probability of 4C $\otimes M_{j_1j_2} = M_{j_3j_4}$ fitting
- j_{mom} and j_{ang} @ OPAL CERN-EP/98-167

$$egin{aligned} &- ext{ sort jets by jet energy } E_{j1} \geq E_{j2} \geq E_{j3} \geq E_{j4} \ &- j_{mom} = rac{|ec{p_1}| + |ec{p_2}| - |ec{p_3}| - |ec{p_4}|}{\sqrt{s}} \ &- j_{ang} = rac{E_4}{\sqrt{s}} (1 - \cos heta_{12} \cos heta_{13} \cos heta_{23}) \end{aligned}$$

- Z^0 mass M_{Z^0}
- c-likeness/bc-likeness of two jets from Higgs c-likeness= $\frac{c_1c_2}{c_1c_2+(1.0-c_1)*(1.0-c_2)}$

Neural network architecture

- TMVA package v3.8.13: Artificial Neural Networks MLP
- neural network architecture 17:40:1
 - input layers: 17 variables
 - one hidden layer: 40 nodes
 - output layers: one
- learning parameters
 - number of training cycles: 800
 - learning rate: 0.02 (default)
 - decay rate: 0.01 (default)
- neuron activation function: sigmoid (default) synapsis function: sum (default) learning mode: sequential (default)

Neural network @ LDCPrime_02Sc

- results @ ILD00: ongoing
- shown results @ LDCPrime_02Sc
- the signal peaks around 1.0; the backgrounds peak around 0.0
- plots are normalizes to one; plot hzh: $q\bar{q}H
 ightarrow q\bar{q}X$

$\sigma(ZH ightarrow qar{q}car{c})$ @ LDCPrime_02Sc

• $q\bar{q}c\bar{c}$ event selection (LDCPrime_02Sc)

- neural network's output > 0.869
- χ^2 probability of 4C $\otimes M_{j_1 j_2} = 91.20$ GeV: > 0.01
- fitted Higgs mass $110 \text{GeV} < M_H^{fit} < 130 \text{GeV}$
- two jets from Higgs: each jet with c-tag > 0.50, c-likeness > 0.80

	N_{event} @ 250 fb^{-1}
ZH ightarrow qar q car c	107
$WW ightarrow q_1 q_2 q_3 q_4$	291.8
$ZZ ightarrow q_1 ar q_1 q_2 ar q_2$	112
$e^+e^- o qar q$	262.2
non-qqcc @ $qar{q}H$	46

• $\Delta\sigma(ZH \rightarrow q\bar{q}c\bar{c})/\sigma(ZH \rightarrow q\bar{q}c\bar{c}) = \sqrt{s+b}/s = 26.8\%$

$Br(H \rightarrow c\bar{c})$ @ LDCPrime_02Sc

• Higgs branching ratio $Br(H \rightarrow c\bar{c})$

$$Br(H
ightarrow car{c}) = rac{\sigma(e^+e^-
ightarrow ZH
ightarrow qar{q}car{c})}{\sigma(e^+e^-
ightarrow ZH)}$$

• $\sigma(e^+e^- \rightarrow ZH)$ from ZH recoil-mass by Kazutoshi Ito

- 4.7% for electron channel
- 3.8% for muon channel

• $\Delta Br(H \rightarrow c\bar{c})$ (LDCPrime_02Sc)

$$egin{array}{lll} rac{\Delta Br(H
ightarrow car{c})}{Br(H
ightarrow car{c})} &=& \sqrt{(rac{\Delta \sigma(e^+e^-
ightarrow ZH
ightarrow qar{q}car{c})}{\sigma(e^+e^-
ightarrow ZH
ightarrow qar{q}car{c})})^2 + (rac{\Delta \sigma(e^+e^-
ightarrow ZH)}{\sigma(e^+e^-
ightarrow ZH)})^2} \ &=& 27.2\% \end{array}$$

Status and Plan

• we have

- analysis code for ILD00 on whizard data
- code to find a good neural network architecture
- method to calculate uncertainty for $Br(H \rightarrow c\bar{c})$
- 100K $q\bar{q}c\bar{c}$ traing sample @ -80% electron 30% positron
- missing part @ ILD00
 - run neural net work for '-80% electron 30% positron'
 - calculate uncertainty for $Br(H \rightarrow c\bar{c})$