Benchmark analysis of tau-pairs

Taikan Suehara (ICEPP, The Univ. of Tokyo)

Contents

- Overview
- Cuts selecting tau-pairs
- Cross section / AFB result
- Cuts selecting $\tau->\pi v$
- Polarization with $\tau->\pi v$ events
- Cuts selecting $\tau->\rho v$
- Polarization with $\tau->\rho v$ events
- Summary

Charge of tau-pair analysis

4. $\mathbf{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}(\mathbf{E c m}=\mathbf{5 0 0} \mathbf{~ G e V})$
a. tau reconstruction, aspects of particle flow
b. π^{0} reconstruction
c. tracking of very close-by tracks

Tau reconstruction is a very challenging topic at the ILC. It will stress the tracking system and the clustering in the calorimeter. In addition selecting π^{0} mesons will probe the photon reconstruction ability of the detector.
Observables are the efficiency and purity. Physical observables are $\sigma, \mathrm{A}_{\mathrm{FB}}$ and Ptau (tau polarization)
Description of LOI benchmark, from ILC-MEMO-2008-001

- Themes

- Tracking and calorimetry of concentrated particles
- Gamma factor is around 140 for 250 GeV тs
π_{0} to 2γ decay reconstruction
- 2γ sare very closed, difficult to separate
- Observables
- Cross section, $\mathrm{A}_{\text {FB }}, \mathrm{P}(\tau)$
- Event selection and π_{0} reconstruction performance (efficiency and purity)

Taikan Suehara et al., ILD meeting @ Seoul, 16 Feb. 2009 page 3

Events (Signal \& Background)

- Signal cross sections: $2.6 \mathrm{pb}\left(\mathrm{e}_{\mathrm{L}}\right), 2.0 \mathrm{pb}\left(\mathrm{e}_{\mathrm{R}}\right)$
$-500 \mathrm{fb}^{-1}$ is available with ILD_00
- Background
- Full SM sample of ILD_00 is used. (samples downloaded to KEK by Feb. 3.
Some of $\gamma \gamma$-> $\tau \tau$ missing)
- Event weighting is performed.
- Major backgrounds:
- Bhabha (35000 pb in SLAC sample)
- Preselected $2 \mathrm{fb}^{-1}$ is prepared by Akiya.

Opening angle > 165deg, $|\cos (\theta)|<0.92$
$\gamma \gamma$-> $\tau \tau$ (3700 pb in SLAC sample)

- WW -> Ivlv (~1 pb)

BG suppression cuts

1. Number of track $<=6$

- Veto hadronic events

2. Specialized jet clustering (TaJet)

- Customized to taus (several particles within narrow angle)
- 1 positive \& 1 negative jets required for further analyses

3. Opening angle > 178deg

- Suppress WW to Ivlv background

4. $40<\mathrm{E}_{\mathrm{vis}}<450 \mathrm{GeV}$
γ-> $\tau \tau$ and Bhabha rejection
5. 2-electron and 2-muon veto

- For bhabha and ee-> $\mu \mu$ veto
- E-ID by Ecal/total deposit, μ-ID by hit/track energy

6. $|\cos \theta|<0.9$ for both jets

- Bhabha is completely suppressed by this cut

Selections

All

All

Taikan Suehara et a

Result of SM suppression cut

event	tautau	SM gg	SM 6f	SM 4f	SM 2f	SM other
Ntrack, jet cut	572650	$7.42 \mathrm{E}+08$	2005.55	$2.35 \mathrm{E}+06$	630123	5655.56
opening angle	152752	$6.46 \mathrm{E}+06$	4.00865	9523.97	157423	1048.42
thetacut	129176	$5.03 \mathrm{E}+06$	1.75392	3779.34	133404	0
ee,mumucut	118540	784486	0	2269.27	2616.24	0
eviscut	114811	3.15477	0	1982.1	490.532	0

- ILD_00 geometry
- Bhabha/ part of $\gamma \gamma$-> $\tau \tau$ are not included.
- Bhabha was checked in LDC', not critical.
- Preselected sample is ready, soon included.
- All background is almost negligible.

Cross section and A_{FB}

SM calculation
(Red: left, Blue: right)

- Cross section precision: 0.3\% (count based).
- AFB precision: $50.5 \pm 0.25 \%$. (statistical error of signal only).

Status on Polarization analysis (ILD_00 is ongoing...)

Decay modes in $A_{p o l}$ analysis

Taikan Suehara et al., ILD meeting @ Seoul, 16 Feb. 2009 page 10

Analysis flow

$\tau->\pi v$ selection cuts

1. 1 prong cut

Jets with >2 charged particle rejected.
2. Lepton veto

Events containing e/us are rejected. (criteria is the same as $A_{F B}$ lepton-pair veto)
3. Energy cut Jets with energy < 10 GeV rejected. (e/ μ / π separation is inefficient in low energy)
4. Events with $>1 \mathrm{GeV}$ neutral particles are rejected.
In "tight cut" event with any neutrals are rejected.
Taikan Suehara et al., ILD meeting @ Seoul, 16 Feb. 2009 page 12

$\tau->\rho v$ selection cuts

1. 1 prong cut
2. Lepton veto
3. Energy cut (jet energy must be $>10 \mathrm{GeV}$)

Above are same as $\tau->\pi v$ cuts
4. Events with > 10 GeV from neutrals (in total) are selected.
5. Mass of ρ is reconstructed, must be within 200 MeV from actual mass (770 MeV).
6. Mass of pO is reconstructed with neutral particles. If \# of neutrals >=3, nearest (in angle) two are combined until 2 particles are left.
Application of this cut is discussed later.

Selection results (mode BG only)

	all tau	pinu				rhonu			
	N	N	e	p	N		e	p	
No cut	2294875	250141	1	0.109	578308	1	0.252		
afb cut	670700	79118	0.316294	0.117963	186002	0.321631	0.277325		
1 prong	564110	78931	0.315546	0.139921	174357	0.301495	0.309083		
energy cut	556681	77964	0.31168	0.140051	174325	0.30144	0.313151		
mu, e veto	332444	75656	0.302453	0.227575					
no gamma	53794	49443	0.197661	0.919117					
ng (tight)	43173	39870	0.15939	0.923494					
mu,e veto	339776				167575	0.289768	0.493193		
any gamma	258777				159036	0.275002	0.614568		
rhomass200	93217				81949	0.141705	0.879121		
piOmass	67300				61000	0.10548	0.906389		
piOmasst	50825				48975	0.084687	0.963601		

- Efficiency and purity are changed from LDC'
- There might be effects of change of PandoraPFA?
- Cut criteria needs to be reconsidered.

Taikan Suehara et al., ILD meeting @ Seoul, 16 Feb. 2009 page 14

ρ and π^{0} reconstruction

$\mathrm{A}_{\mathrm{pol}}$ (πv mode) PRELIMINARY!

Values obtained by signal-only events!

ILD is all for now. Following is the old result.

$\tau->\rho v, \rho->\pi \pi$ distribution (1) no π^{0} cut

Edge Region
Central Region
\cos (theta) of pi in rho-rest frame

Edge Region

- Clear difference between e_{L} and e_{R} observed.
- Distribution is degraded due to the cut effects.
$P_{\text {pol }}$ vs dist. calc
Taikan Suehara et al., ILD meeting @ Seoul, 16 Feb. 2009 page 18

$\tau->\rho v, \rho->\pi \pi$ distribution (2) tight π^{0} cut

- Number of signal is about a half.
- Difference between geometry enhanced.
- J4LDC is not realistic with this cut?
- Background is quite low, negligible level.

Obtaining $P(\tau)$ value

τ POLARIZATION MEASUREMENTS AT LEP AND SLC

K. HAGIWARA ${ }^{\text {a,b }}$, A.D. MARTIN ${ }^{\text {a }}$ and D. ZEPPENFELD ${ }^{\text {c }}$
${ }^{\text {a }}$ Physics Department, University of Durham, Durham DHI 3LE, UK
KEK, Tsukuba, Ibaraki 305, Japan
Physics Department, University of Wisconsin, Madison, WI 53706, USA

Physics Letters B, 235 (1990) 198

$y=\frac{\left|E_{\pi_{0}}-E_{\pi-}\right|}{E_{\text {beam }}}$,
to be a good τ polarization analyzer. The y distribution is shown in fig. 2 for three values of the τ^{-}polarization: $P_{\tau}=-1,0$ and +1 . Indeed a large sensitivity to the τ polarization is found.

In order to quantify this sensitivity we consider the y symmetry
$A_{y}\left(P_{\tau}\right)=\frac{\Gamma\left(y>y_{c} ; P_{\tau}\right)}{\Gamma\left(y>y_{\mathrm{c}} ; P_{\tau}=0\right)}-\frac{\Gamma\left(y<y_{c} ; P_{\tau}\right)}{\Gamma\left(y<y_{c} ; P_{\tau}=0\right)}$
with respect to the crossover point at $y_{c}=0.316$. One

Fig. 2. Distribution of the energy difference of the two decay pions in the process $\tau^{-} \rightarrow \rho^{-} \nu_{\tau}, \rho^{-} \rightarrow \pi^{-} \pi^{0}$ for three values of the τ^{-}polarization. The common crossover point of the curves at $y_{\mathrm{c}}=0.316$ is due to the linear dependence of $\mathrm{d} \Gamma / \mathrm{d} y$ on the τ polarization.

- Combined information of $\tau->\rho \nu$ and $\rho->\pi \pi$ decay can be used in this method.

$\mathrm{A}_{\mathrm{pol}}$ calculation (ρv mode)

	Pol	A pol (nopin asscut)	estat	shift	A pol(w pi	scut)	estat	shift
G LD	$\begin{gathered} \mathrm{eL} \\ (80 \%) \end{gathered}$	34.06\% $\pm 4.26 \%$	1.17\%	-2.68\%	34.53\% \pm	6.78\%	1.86\%	-1.66\%
GLD'		$38.66 \% \pm 4.30 \%$	1.19\%	-3.59\%	42.62\% \pm	7.36\%	2.04\%	-1.10\%
J4LDC		$34.86 \% \pm 4.47 \%$	1.24\%	-4.24\%	36.30\% \pm	8.24\%	2.29\%	0.79\%
LDC'		$35.62 \% \pm 4.13 \%$	1.17\%	-3.36\%	36.81\% \pm	6.05\%	1.72\%	-0.99\%
G LD	$\begin{gathered} \text { eR } \\ (80 \%) \end{gathered}$	$-28.33 \% \pm 4.87 \%$	1.37\%	4.91\%	$-30.89 \% \pm$	8.32\%	2.35\%	3.70\%
GLD'		$-30.87 \% \pm 5.00 \%$	1.42\%	3.67\%	$-34.26 \% \pm$	9.36\%	2.66\%	0.88\%
J4LDC		$-35.34 \% \pm 5.38 \%$	1.52\%	2.53\%	$-36.45 \% \pm$	11.18\%	3.16\%	-1.90\%
LDC'		-32.70\% $\pm 4.89 \%$	1.41\%	2.89\%	-32.46\% \pm	7.86\%	2.27\%	-0.49\%

Summary

- SM separation cuts were developed.
- Most of the SM process can be suppressed by the cuts efficiently.
- We need to check bhabhal ($\gamma \gamma$-> $\tau \tau$?) for confirmation.
- Cross section and $A_{\text {FB }}$ are obtained.
- Polarization
- ILD_00 analysis is ongoing.

Thank you for your attention.

Backup

