SUSY point 5 chargino & neutralino: part I

Taikan Suehara

ICEPP, The Univ. of Tokyo

Contents

- Overview
- SM separation cuts
- Cross section analysis by 2D fit
- Mass fit
- Summary

Physics process for optimization

Benchmark processes:

Processes (e⁺e⁻→)	√S (GeV)	Observables	Comments		
ZH, ZH→e⁺e⁻X,	250	σ, m _H	$m_{H}\text{=}120\text{GeV},$ test materials and γ_{ID}		
→μ⁻μ⁺Χ	250	σ, m _H	m_{H} =120GeV, test $\Delta P/P$		
ZH, H→cc, Z→vv	250	Br(H→cc)	Test heavy flavour tagging and anti- tagging of light quarks and gluon		
, Z→qq	250	Br(H→qq)	Same as above in multi-jet env.		
$Z^{\star} \rightarrow \tau^{+}\tau^{-}$	500	$\sigma, A_{FB}, Pol(\tau)$	Test π^0 reconstruction and τ rec. aspects of PFA		
tt, t→bW, W→qq'	500	σ, A_{FB}, m_{top}	Test b-tagging and PFA in multi-jet events. m _{top} =175GeV		
$\chi^+\chi^-, \chi_2^0\chi_2^0$	500	σ, mχ	Point 5 of Table 1 of BP report. W/Z separation by PFA		

Events (Signal & Background)

- Signal: SUSY point5
 - ch1ch1->WW->qqqq
 - ne2ne2->ZZ->qqqq

- Distinguish those by W/Z invariant mass.
- Background (for example):
 - Other SUSY: leptonic mode, ne1ne2 production
 - SM 4jet: e+e- -> WW/ZZ
 - SM 6jet: e+e- -> WWZ -> qqqq + leptons
 - SM 2photons to WW

SM Rejection cuts

- Common preselection
 - # of tracks >= 20
 - 100 GeV < Evis < 300 GeV</p>
 - All jet > 5 GeV
 - $-|\cos(\theta)| < 0.99$ for all jets
- Additional cuts
 - $-y_{34}$ (Durham threshold between 3- and 4- jets) > 0.001
 - # of track for each jet is >= 2
 - $|\cos(\theta)|_{miss} < 0.99$
 - Lepton (>20GeV) veto
- Optional
 - $-|\cos(\theta)| < 0.9$ for all jets

Cut results											
	ch1 had	ne2 had	other SUSY	SM gg	SM 6f	SM 4f	SM2f	SM other			
nocut	28529.4	5488.42	43458.4	2.38E+09	520918	1.48E+07	2.07E+07	4.76E+06			
ntrack>=20	27896.5	5449.08	15260.7	66772.9	495002	6.68E+06	5.33E+06	0			
100 <evis<300< td=""><td>27894.7</td><td>5449.09</td><td>14431.1</td><td>33502.1</td><td>44414.8</td><td>950652</td><td>1.56E+06</td><td>0</td></evis<300<>	27894.7	5449.09	14431.1	33502.1	44414.8	950652	1.56E+06	0			
ejet>5	27888.8	5446.16	13688.2	33082.4	44119.4	907594	1.47E+06	0			
cos(theta) <0.99	26557.3	5239.69	12837.5	26308.9	41136.5	670243	875694	0			
yminus>0.001	26417.4	5218.15	10864.1	24476.1	38682.3	416115	166358	0			
#track >= 2 / jets	25716.4	5145.92	5656.12	19652.5	22817.8	249306	145328	0			
misscos(theta) <0.99	25462.6	5099.45	5604.72	5077.23	22383.2	187591	4050.97	0			
elepton<20	24729.5	4856.27	2420.98	2929.1	12654.9	144660	3324.55	0			
cos(theta) <0.95	20631.3	4116.74	2047.65	2182.8	10230.3	76437.6	2412.59	0			
cos(theta) <0.9	16272.8	3291.77	1660.26	1624.64	7791.32	44891.5	1791.08	0			

- SM4f is the main background.
- SM4f can be reduced by tight |cos(θ)| cuts while part of signal is also lost

Mass distribution after cuts

Tight $cos(\theta)$ cut (<0.9)

Loose $cos(\theta)$ cut (<0.99)

- Kinematic fit result (details shown by Jenny).
- SM rate can be suppressed below signal level.

Dijet-mass distribution

• Loose $|\cos(\theta)|$ cut

Fitting result

Fitting performance

- Function
 - NDF=8; Gaussian center(2), peak height(2), width(2, m1+m2 direction & m1-m2 direction), background(2, pol1)
- Statistical error
 - Loose cut: ch1: 1.6%, ne2: 6.8%
 - Tight cut: ch1: 2.1%, ne2: 7.1%
 - All 8 parameters are float, gives better result if some of parameters are fixed.
- Works to do
 - Ratio of chargino/neutralino differs from MC input. Need to improve fitting function.
 - Suppress chi2/NDF (about 1.3 ~ 2 now)

- No progress since Cambridge
- Fit func: 3rd poly x error func (combolution)
- Mass error is ~ 1 GeV level
- To be applied to ILD_00 (very soon!)

SUSY summary

- SM separation cuts are developed and now discussing.
 - WW is the main remaining background, but on the invariant-mass distribution the background amount is lower than signal.
- Cross section fit was applied to di-jet mass distribution
 - Preliminary results are obtained in ILD_00
 - Need to improve, esp. for ch1/ne2 ratio
- Mass fit is soon reprocessed with ILD_00.