Cylindrical and rectangular support tube properties

KEK Hiroshi Yamaoka

Two types of support tube has been studied.

Boundary conditions;

- -FEM analyses
 - Static analysis
 - Modal analysis
 - Dynamic load such as ground motion
- Materials
 - Stainless steel
- -Load condition See: right-upper

Results: Cylindrical tube

Strength comparison with various shape

	Di 650mm Do 750mm	650mm 750mm	650mm 750mm		
Bending $I = \frac{\pi \left(D_o^4 - D_i^4 \right)}{64}$		$\frac{D_o^4 - D_i^4}{12}$			
D _B =ExI	l = 6.77e9mm ⁴	I = 11.5e9mm⁴	l = 6.3e9mm ⁴		
E: Young's modulus I: Moment of Inertia	1	1.4	0.93		
Tension	$I_A = \frac{\pi \left(D_O^2 - D_i^2 \right)}{4}$	$D_O^2 - D_i^2$			
D _A =ExA	A = 1.1e5mm ²	A = 1.4e5mm ²	A = 1.08e5mm ²		
E: Young's modulus A: Area	1	1.3	0.98		
Torsion	$I_p = \frac{\pi \left(D_o^4 - D_i^4 \right)}{32}$	$\frac{2.25 \cdot (D_o^4 - D_i^4)}{16}$	$D \cdot t^3$		
D _t =ExI _p	l _p = 13.5e9mm⁴	l _p = 19.4e9mm⁴	Ι _p = 9.4e7mm ⁴		
E: Young's modulus I: Polar moment of inertia	1 a	1.4	0.01 6		

(Modeling)

Calculation of spring constant of the tension rods. For the modeling of tension rods, spring constants are defined on the top of support rods.

Tension rods; CFRP E=130GPa Density: 1.5e-6kg/mm^3

$$\sigma = \varepsilon \cdot E$$
$$P / - \frac{\Delta l}{\epsilon} E$$

$$A = \frac{\Delta l}{l} \cdot E \cdot A$$
$$P = \frac{\Delta l}{l} \cdot E \cdot A$$

When Δl is 1*mm*, P shows the spring constant.

$$P_{vertical} = \frac{1}{3180} \cdot 1.3 \times 10^4 \cdot (50 \times 2)$$

=410kg

 $K_v = 410 kg/mm$: Spring constant of the vertical tension rods.

$$P_{horizontal} = \frac{1}{3000} \cdot 1.3 \times 10^4 \cdot \pi (20^2 - 18^2)$$

= 1035kg

 $K_{H} = 1035 kg/mm$: Spring constant of the horizontal tension rods.

Results of static analysis

11

ANSYS

	Туре	Square	Square	Half Cylinder	Full Cylinder	Assembled with Thred bolts	Assembled with Thred bolts
	Support conf.	Cantilevar	With tension rods	Cantilevar	Cantilevar	Cantilevar	With tension rods
	HxB/Diamter(mm)	650x650	650x650	750dia.	750dia.	750dia.	750dia.
Size	Thickness(mm)	30.0	30.0	50.0	50.0	50.0	50.0
	Length(mm)	5565	5565	6000	6000	6000	6000
Load conditions	QD0(kg)	1000.	1000.	700.0	700.0	700.0	700.0
	BeamCAL(kg)	4000.0	4000.0	100.0	100.0	100.0	100.0
	LHCAL(kg)			3000.0	3000.0	3000.0	3000.0
	LumiCAL(kg)			250.0	250.0	250.0	250.0
	ECAL(kg)			420.0	420.0	420.0	420.0
	Self-Weight(kg)	2400	2400	2685.5	5371.0	5371.0	5371.0
Static analysis	Stress(MPa)	53	59	83.4	38.4		200
	Deformation(mm)	6.3	4.4	19.7	3.2	6.0	3.4
Natural Frequency	1st mode(Hz)	3.5	4.9	3.7	9.5		9.7
	2nd	6.9	8.3	5.7	78.9		80
	3rd	19	20	20.2	122.5		110
Harmonic analysis	Inp. force (N)	2.0E-03	2.0E-03	2.0E-03	2.0E-03		2.0E-03
	Amp.(nm)	3.5	2.0	7.8	2.7		1.1

Ref.

Influence of E.Y. square hole on the magnetic field

Magnetic field density (@Bc=3T)

(FEM model: ANSYS)

(Magnetic field density: R283mm)

Magnetic field uniformity in TPC volume

Uniformity= Max. 4.8mm

Magnetic field along the beam line

Although 3D magnetic field calculation should be carried out because the FEM model is different from the present configuration and the central magnetic field is stronger than this calculation.

- Difference of field uniformity between R400 and R283.
 - ~1mm (~20% different)
- Difference of magnetic field.

~ Max. 0.13T(Bc=3T)