Top pair production I

Andreas Moll Alexei Raspereza

ILD Workshop Seoul

16 - 18 February 2009

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Introduction
- The analysis chain
 - LeptonVeto
 - Combinatorics
 - Kinematic fitting

• The analysis

- Events used
 - Background rejection
- Fitting the final distributions

Introduction

Analysis goal: estimate statistical error on m_t and width from direct reconstruction of top quark decays.

Combination of measurements at DØ and CDF $m_t = 172.4 \pm 0.7 \, GeV(stat.)$

The top quark almost exclusively decays into a W boson and a b quark.

 $t \,\overline{t} \rightarrow (W^+ b) (W^- \overline{b})$

The W can either decay hadronically into a $q\bar{q}$ pair or leptonically into lv.

In this analysis:

$t \bar{t} \rightarrow (b q \bar{q}) (\bar{b} q \bar{q})$	Fully hadronic , FH
$t\overline{t} \rightarrow (bq\bar{q})(\bar{b}I\nu)$	Semi leptonic , SL
Analysis done for:	100 <i>fb</i> ⁻¹ unpolarized beams

- Using flavour tagging information, the jets with the two highest b-tag values are taken.
 They are regarded as b-jets, resulting directly from the top quark decays.
- The four remaining jets are considered as decay products of the two W bosons.
 There are three possible ways to combine four jets into two di-jets.
 For each possible combination the quantity \Delta_w is calculated:

$$\Delta_{W} = |m_{ij} - m_{W}| + |m_{kl} - m_{W}|$$

with m_{ij} and m_{kl} di-jet masses for a given jet pairing

The combination yielding the **smallest value** of Δ_w is chosen to form the two W bosons.

- 3) The production of two heavy states (top quarks) having the same mass is expected.
 - Choose the two di-jet / b-jet pairs which yields minimal three-jet mass difference.

- Using flavour tagging information, the jets with the two highest b-tag values are taken.
 They are regarded as b-jets, resulting directly from the top quark decays.
- 2 The two remaining jets are considered as decay products of the hadronically decaying W boson.
- 3 The three-momentum of the neutrino is defined as the missing momentum vector of the event. The energy is defined as the magnitude of the momentum vector.
- Identified lepton (from LeptonVeto) and neutrino are considered as decay products of the leptonically decaying W boson.
- 5 Choose the combination of the hadronically and leptonically decaying W bosons with the two b-jets which gives the minimal Δ_t :

 $\Delta_t = |m_{t1} - m_{t2}|$

with m_{t1} and m_{t2} invariant masses of reconstructed top quarks.

Kinematic fitting is performed using MarlinKinFit package.

Signal Fully hadronic	bbuddu, bbudsc, bbcsdu, bbcssc	
Signal Semi leptonic	bbn1e1du, bbn1e1sc, bbude1n1, bbcse1n1 bbn2e2du, bbn2e2sc, bbude2n2, bbcse2n2	
2-fermion background	uu, dd, ss, cc, bb	
4-fermion background	uddu, udsc, csdu, cssc, uuuu, uuss uucc, uubb, dddd, ddss, ddcc, ddbb ssss, ssbb, cccc, ccbb, bbbb	
4-fermion background	n1e1du, ude1n1, n1e1sc, cse1n1 n2e2du, ude2n2, n2e2sc, cse2n2 n3e3du, ude3n3, n3e3sc, cse3n3	
4-fermion background	uue1e1, e1e1dd, e1e1ss, cce1e1, e1e1bb uue2e2, e2e2dd, e2e2ss, cce2e2, e2e2bb uue3e3, e3e3dd, e3e3ss, cce3e3, e3e3bb	

Background rejection is performed using the **binned likelihood technique**.

Therefore, the most discriminating variables are chosen

Fully hadronic	Semi leptonic	
btag,	btag,	the highest b-tag value among six jets
$btag_r$	btag _r	the second highest b-tag value
У _{0٦}	Υ _{٣ε}	the jet resolution parameter for which the event is resolved from 6/4 to 5/3 topology.
m_w	m _w	the masses of the reconstructed W bosons
$\Delta m_{ m rj}$	Δm_{r_j}	the mass difference of the reconstructed top quarks
N _{Particles}	N _{Particles}	the number of particles per event

Likelihood distributions

Top quark invariant mass (with KinFit)

- Physical background fitted with polynomial function of second order.
- Mass spectrum fitted using

Parameters from **resolution function fit** free parameters: top mass, top width, overall normalization

- Physical background fitted with polynomial function of second order.
- Mass spectrum fitted using

Parameters from **resolution function fit** free parameters: top mass, top width, overall normalization

Conclusion

Analysis of the top pair production at the ILC

- Developed a method to measure top quark mass and width
- Used fully hadronic and semi leptonic decays of top pairs
- Added appropriate background

Luminosity: Beams:	100 fb ⁻¹ unpolarized
Input values:	$m_{top}^{}=$ 174 GeV $\Gamma_{top}^{}=$ 1.5 GeV
Center-of-mass energy:	500 <i>GeV</i>
Detector model:	ILD_00

Result:

Fully hadronic:	$m_{top} = 173.96 \pm 0.11(stat.) GeV$	$\Gamma_{top} = 1.57 \pm 0.07$	GeV
Semi leptonic:	$m_{top} = 174.33 \pm 0.14 (stat.) GeV$	Γ_{top} =1.56±0.08	GeV

Combined:

$$m_{top} = 174.09 \pm 0.08(stat.) GeV$$
 $\Gamma_{top} = 1.57 \pm 0.05 GeV$

Backup Slides

Take the Tri-Jet (b-Jet/Pair) combination with smallest Δ_{fC} as final jet state.

Take the combination with smallest Δ_{fC} as final jet state.