# **DHCAL Construction Status**





José Repond Argonne National Laboratory



CALICE Meeting, February 19 – 20, 2009 Kyungpook National University, Daegu, Republic of Korea

### 1 m<sup>3</sup> – Physics Prototype

#### Description

40 layers each ~ 1 x 1 m<sup>2</sup> Each layer with 3 RPCs, each 32 x 96 cm<sup>2</sup> Readout of 1 x 1 cm<sup>2</sup> pads with one threshold (1-bit) ~400,000 readout channels Layers to be inserted into the existing AHCAL structure

#### Purpose

Validate DHCAL concept Gain experience running large RPC system Measure hadronic showers in great detail Validate hadronic shower models

#### Status

Started construction in fall 2008



### **RPCs and cassettes**

### **RPC** design

- 2 glass RPCs
- 1 glass RPCs (developed by Argonne)

### Prototypes

#### Not on critical path



| Number of RPCs | Number of glass plates | Glass thickness<br>[mm] | Size<br>[cm] | Status      | Tests    | Problems                 |
|----------------|------------------------|-------------------------|--------------|-------------|----------|--------------------------|
| ~15            | 2                      | 1.1                     | 20 x 20      | built       | 2 years  | None                     |
| 1              | 1                      | 1.1                     | 20 x 20      | built       | 2 years  | None                     |
| 1+3            | 2                      | 1.2                     | 32 x 96      | built       | 1 month  | High pad<br>multiplicity |
| 3              | 1                      | 1.1                     | 20 x 20      | built       | 2 months | None                     |
| 2              | 2                      | 0.85/1.2                | 32 x 96      | being built |          |                          |

### Cassettes

Purpose: protect RPCs, cool front-end ASICs, compress RPCs  $2 \times 2 \text{ mm}^2$  copper sheets First prototype being tested



#### Comment I: Glass thickness

Pad multiplicity of 32 x 96 cm<sup>2</sup> too large: due to glass of 1.2 mm (and track extrapolation)

Difficulty to obtain 0.85 mm glass in the U.S.

Vendor from Europe identified, provided 10 samples

#### Comment II: 1 – glass RPCs

Advantages: pad multiplicity ~1, thinner, simpler, surface resistivity not critical, better rate capability, compression with electric field Disadvantage: can't be assembled without final electronics, recent design (less tested)



Some layers for the physics prototype will be equipped with 1 – glass RPCs

#### Comment III: Resistive paint

LICRON paint (we all used for years) not available anymore New LICRON product difficult to apply (backup solution) Explored two alternatives

> Artist paint (currently preferred solution) Floor paint (possible solution)



#### **Production of chambers**

Need 120 chambers for physics prototype Standard assembly procedure not yet developed Availability of Argonne technicians

- $\rightarrow$  Expect production rate of 1 2 RPCs/day
- $\rightarrow$  Estimated 3 6 months for 120 chambers (significant faster for 1 glass chambers)

Cosmic ray test stand exists



### **Front-end Electronics**

### **DCAL III chip**

Currently on critical path

Produced in 2008 Received 11 wafers with 966 chips each  $\rightarrow$  10626 chips Problems with packaging

Previous packaging obsolete New package identified, clamshell for testing available More chips than expected!

 $\rightarrow$  Packaged chips by early March

Testing to be done

'by hand' at Argonne for first chips (board being fabricated) by robot at FNAL (being programmed)

### Pad- and Front-end board

Soon on critical path

32 x 48 cm<sup>2</sup>  $\rightarrow$  4 x 6 chips Being designed (to be prototyped and tested in March)

### Data concentrator

Design and firmware completed To be implemented onto front-end board

### **Gluing fixture**

Conductive glue between pad- and front-end boards

1536 dots in less than 3 hours

x-y machine designed and partly assembled

Control software written

Tests with glue to start soon



Glue Dispenser

 Controller
 Solenoid valve

 X axis motor and driver
 Y axis motor and driver



### **Back-end Electronics**

#### Not on critical path

New system design requires 20

Data collector (DCOLs)

Design finalized (identical to VST) Production of 35 modules in March Testing in April

### Timing and trigger modules (TTMs)

New system design requires 2 – 3 Minor design changes to be implemented Production in March - April





### Gas and HV systems

#### Not on critical path

### Gas mixing system

Designed and gas flow controllers purchased Other parts to be ordered this week Assembly in March

### Gas distribution system

Re-use system from Vertical Slice Test

### **HV system**

Two full systems available Control software written



Not on critical path

Implemented into CALICE DAQ framework New readout architecture and geometry being implemented

### **OFFLINE** software

Not on critical path

Conversion of VST data to LCIO done Will be developed in next few months

Tentative agreement to use standard LCIO – Marlin – LCCD – Mokka chain Detailed discussions at the next Technical board review at FNAL in May

### **Test Beam Plans**

Start with standalone DHCAL program (including TCMT!)

Broadband muons for calibration Positrons 1 – 16 GeV Pions 1 – 66 GeV Protons 120 GeV

Followed by data taking with Silicon-Tungsten in front

Time scale still uncertain

Possible start in 2009 Definitely data taking in 2010

### **DHCAL Construction Overview**

| Item             | Status                      | Outstanding problems/tasks                                                                                                                     | Critical path  |
|------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| RPC construction | Several prototypes<br>exist | Test of thin-glass 2-glass chambers<br>Test of full-scale 1-glass chambers<br>(requires final front-end board)<br>Develop production procedure | (October - ?)  |
| DCAL chips       | Being packaged              | Robot testing                                                                                                                                  | Until ~May     |
| Front-end boards | Being designed              | Final design/prototype (requires final ASIC)<br>Testing procedure to be developed                                                              | ~May - October |
| Back-end         | Being produced              | Small modifications to the TTM design                                                                                                          | No             |
| Gas system       | Being assembled             | None                                                                                                                                           | No             |
| HV system        | Completed                   | None                                                                                                                                           | No             |
| DAQ software     | Being modified              | None                                                                                                                                           | No             |
| OFFLINE software | Being developed             | None                                                                                                                                           | No             |

# **Towards a Technical Prototype**





José Repond Argonne National Laboratory



CALICE Meeting, February 19 – 20, 2009 Kyungpook National University, Daegu, Republic of Korea

# What is a Technical Prototype

E.g. SiD's latest ideas about the HCAL barrel



12-sided polygon



### Technical prototype module

Wedge-shaped 6 m long 40 active layers 120 m<sup>2</sup> of RPCs

approximately

## **Connections to the outside world**

|             | Connection                    | 1 m <sup>3</sup><br>prototype | Technical<br>prototype |
|-------------|-------------------------------|-------------------------------|------------------------|
| RPC         | Gas inlet                     | 40                            | 1                      |
|             | Gas outlet                    | 40                            | 1                      |
|             | High-voltage supply           | 40                            | 1                      |
|             | High-voltage computer control | -                             | 1                      |
| Front-end   | Low-voltage                   | 120                           | 1                      |
| electronics | Cooling water inlet           | 40                            | 1                      |
|             | Cooling water outlet          | 40                            | 1                      |
|             | Data cable                    | 240                           | 1                      |

### **Topic of this Talk**



View from the U.S. DHCAL group...

### A. Large Area RPCs

#### Area approximately up to 1 x 6 m<sup>2</sup> in one layer

How to handle 3 - 6 m long glass, is it available?

Typical thickness 0.8 – 1.1 mm

How to distribute high voltage on the surface?

Difference in high voltage leads to different efficiency

How to circulate the gas within a chamber?

Flow needs to be uniform, since gas contamination uniform

How to minimize the dead area?

In 1 m<sup>3</sup> prototype about 3.3% (frame) + 1.4% (fishing lines)

Currently not being investigated

# **B.** Thin RPCs

Marty keeps telling us that every mm costs several M\$

#### **One-glass design developed by Argonne**



Once glued on, the front-end board can not be exchanged, without destroying the chamber

# C. Gas System



Need to identify an alternative with comparable performance

So far Ar,  $CO_2$  based mixtures do not match HFC-134a Perhaps HFC-152a will do (just approved as coolant for car A/C systems)

### Need to recirculate the gas

Difficult issue Not entirely successful at the LHC We have new ideas...

Gas distribution within a module

#### Major headache

Needs manifolds, implemented in wedge structure Needs to provide same gas flow to each layer!



# Don't know about recent activities

# Requested funds for lowa to develop

# **D. High Voltage Distribution**

Currents in RPCs are small (~nA)

Voltages are high (~6.3kV)

Variations between layers due to construction

Need to set HV in each layer individually Need ability to measure current in each layer Need ability to switch off sparking layers

Brilliant idea?

Cockcroft-Walton technology?



Requested funds for lowa to develop (together with Argonne)

# E. Cassette structure

Needed to protect RPCs (glass) Needed to maintain smallest gap between glass and pad-board

 $\rightarrow$  Only for 2-glass design  $\leftarrow$ 

Not needed for cooling of Front-end electronics?

DCAL power consumption ~ 0.2 Watt/chip Assuming 120 m<sup>2</sup>  $\rightarrow$  1,200,000 channels  $\rightarrow$  18750 ASICs  $\rightarrow$  3750 Watt/module Power pulsing (?) reduces this to 40 Watt/module

#### Test beam, Cosmic Rays

Requires triggered readout Can't apply power pulsing efficientl Needs cooling...

#### Additional challenge

Cassettes needs to be stiff enough not to crash the glass, electronics

 $\rightarrow$  in any module orientation  $\leftarrow$ 

**Experience** with 1 m<sup>3</sup> prototype calorimeter will help

Multiplicity 2.80 2.75 2.70 2.65 B RPC8 2.60 RPC8 jminuit fit 2.55 RPC8 2.50 Entries : 6 0000 2.45 PC8 iminuit fit 2.40 2.7242±0.0403 b:071647+004766 2.35 2.2887±0.4961 2.30 0.22995 2.25 2.20-27242 - 0.716472.15-2.10 2.05 2.00-1.95 1.90 Layers of Myla



# F. Pad-board

Assuming we keep the 1 x 1 cm<sup>2</sup> segmentation

...........

### Current design

Pad-board separate from front-end board Neither has costly blind or buried vias Connection to front-end board with conductive glue Total thickness of pad- + front-end boards ~ 3 mm Fixed width for 1 x 1 m<sup>2</sup>



Fixed or variable width of pads?

# **G. Front-end ASIC**

### Currently (DCAL III chip)

64 channels/ASIC No power pulsing Direct communication with data concentrators Height ~ 1.4 mm

### Needed for the technical prototype

Memorandum of Agreement between ANL and FNAL concerning the design of ASICs Plan is to work on DCAL IV (among other things)





## H. Front-end data concentrator

# **Reliability!**

### Currently

6 x 4 ASICs per board  $\rightarrow$  1 data concentrator

Exploit more modern technologies

e.g. Gigabit Transceivers

Serving a whole row of ASICs (up to 50) Output 1 single optical fiber to be routed to outer edge of module Currently not yet pursued

## I. Low-voltage distribution

### Currently

1 cable per front-end board

Need to develop

Distribution system Ability to turn on/off each layer individually Ability to measure currents to each layer individually Ability to handle power pulsing

**Currently not yet pursued** 

### J. Back-end readout system

#### Currently

VME based system located in rack LVDS communication with data concentrators

Technical prototype needs

System located in back beam area Optical fiber link with front-end **Currently not pursued (by us)** 

# **K. Mechanical Structure**

#### Currently

Being developed by both ILD and SiD

Details of the design

Depend on the outcome of the above mentioned R&D Significant effort needed to design a viable structure

Not yet urgent

# **Overview of R&D for Technical Prototype**

| R&D topic                   | Being addressed | Planned to be<br>addressed | Plan to be<br>developed |
|-----------------------------|-----------------|----------------------------|-------------------------|
| Large area RPCs             |                 |                            | x                       |
| Thin RPCs                   | х               |                            |                         |
| Gas system,<br>distribution |                 | x                          | X                       |
| High Voltage distribution   |                 | x                          |                         |
| Cassette structure          |                 | х                          |                         |
| Pad board                   |                 |                            | x                       |
| Front-end ASIC              |                 | х                          |                         |
| Front-end data concentrator |                 |                            | Х                       |
| Low Voltage distribution    |                 |                            | x                       |
| Back-end readout system     |                 |                            | Х                       |
| Mechanical<br>structure     | Х               |                            |                         |

Lots of challenges and work...