# R&D for GRPC SDHCAL

Imad Laktineh



# Contents

# Status of 1M<sup>2</sup> GRPC R&D Preparation for the 1M<sup>3</sup> prototype

## 1M<sup>2</sup> for the technological prototype

#### Technology drivers :

- Closed chamber design no external gas-tight box
- Reduce the dead zones: spacers, frame
- uniform resistive coating
- Low cost
- Scalable

```
Components
```

Borosilicate glass

Anode: 0.7 mm

Cathode: 1.1 mm

Resistive layer (~ 20µ)

Graphite, Licron' (polymer), Statguard' (oxides of Fe, Ti) Insulation layers – mylar:

175  $\mu$  cathode side (HV ~7.5 kV) 50  $\mu$  anode side (0 V)

## 1M<sup>2</sup> for the technological prototype

- Two types of chamber:
  - Standard' chamber
    - Frame in G10, thickness 1.2 mm, width 3 mm
    - 'Channelled' gas distribution '2 fishing lines' (PMMA)
  - 'Capillary' chamber
    - Capillary tube frame 1.2X.8 mm
    - Frame used to distribute gas (0.3 mm holes drilled in capillary walls)
    - Advantage: reduction of dead zones
  - Support between glass planes:
    - Ceramic balls diam. 1.2 +/- 0.02 mm
    - Distance between balls optimized (ANSYS):
      - 100 mm (max. deformation 44  $\mu$  81 balls / m2)

#### Mechanical deformation of the detector

#### Deformation with HV and ceramics balls



#### Gas distribution, 'standard' chambers



#### Simulation – gas circulation in standard chamber





#### Simulation – gas circulation in capillary chamber



# M<sup>2</sup> GRPC Status

4 chambers of 1M<sup>2</sup> were built up to now in Lyon

- All with the standard gas distribution system
- **2** with Licron (aerosol , $\rho_s \sim 30 \text{ M}\Omega/\Box$ )
- 1 with Statguard (liquid, 500 M $\Omega$ / $\Box$  !!!!!)
- 1 to be coated with Statguard (silk screen printing)

Two kinds of problems were encountered and solved:

- Gas tightness
- High voltage connection
- Resisitivity control

# Construction steps

- Clean glass and cover with resistive coating
- Glue micro-balls, frame, gas spacers and capillary tubes to cathode glass on gluing table
- Add glue to upper surfaces of balls and gas spacers
- Turn table to vertical position
- Introduce anode glass
- Turn table to horizontal position
- Deposit glue lines between glass and frame to make gas-tight
- Glue 6mm gas connectors to capillaries and solder HV connectons
- Transfer to honeycomb support



# Gas tightness

- First chambers inflated under gas pressure!
- Glue failure caused balls to become detached from upper glass
- Subequent failure of glue around perimeter → gas leaks
- Over-pressure in chamber not excessive (Δp<sub>exit</sub> ~2.5 mbar ≡ 250g / ball max.)



## Glue test



- Usual glue two-component epoxy AY103 + HY951: <u>2.7g/cm2</u>
- Dow Corning RTV Silicone 3140: <u>5.0g/cm2</u>
- Araldite epoxy 2011 / 2012: <u>108 g/cm2</u>

# HV connections



- Recurring problem loss of HV connection on Licron chambers
- Apparent thinning of Licron layer near the copper strip glued to the glass
- Occurred using: After short time (few days to a couple of weeks)
  - Copper Scotch with conductive adhesive
  - Copper strips glued with silver-loaded varnish
- Solutions found:
  - Graphite Scotch
  - Epotek EE129 conductive epoxy
    - Both solutions seem to work up to now

## Statguard resistivity (1)

- Commercial product used for ESD protection of floor surfaces
- Potential to silk-screen print onto glass
- Relatively inexpensive
- Good surface finish
- Small chamber in Nov. 08 test beam performed reasonably well (efficiency, multiplicity) →Vincent talk
- IM<sup>2</sup> Statguard chamber in same test beam had static build-up problem → few HARDROCs damaged due to charge breakdown

This is due most probably to the very high Statguard resistivity (500M $\Omega/\square$  )

## Statguard resistivity (2)

- Resistivity not easily controllable:
  - Varies from 10 MΩ/□ to >500 MΩ/□ for no apparent reason
  - Same glass cleaning procedure
  - Same method of deposition (roller)
  - Same number of layers and approximate layer thickness
- Recent tests indicate roller may be to blame
- Consistent results (~25 M $\Omega$ / $\Box$  for 1 coat) with paint brush or skimmer
- Silk-screen printing method has been investigated

## Silk-screen printing method



- Silk-screen printing method provides a uniform thickness.
- Suitable for coating of large surface detectors
- Different screen configurations were tested using Statguard to obtain the needed resistivity
- other coatings will be tested (colloidal graphite)

#### Resistivity evolution with time after silk-screen painting



- Resistivity depends on the layer thickness (up to some extent)
- Using the screen structure allows to determine the thickness (less fibers/cm→ more painting→thicker layer→less resistivity)



- 8 PCB of 50X33.3 cm<sup>2</sup> were conceived and produced
- 8-layer, class 6 (buried vias)
- 6 were equipped with hardroc1 (plastic packaging)  $\rightarrow$  144 ASICs
- PCB are connected 2 by 2 using zero resistor



## Readout electronics status for M<sup>2</sup> detector

Problems found and fixed :

- Slow control and data readout failure: "Clock signal arriving before data signal after few ASICs"
  - $\rightarrow$  buffers added (2/24 asics)
  - $\rightarrow$  critical line were adapted to avoid reflections
- DIF firmware failures
  - → state machines "latched"
  - $\rightarrow$  external trigger system correctly implemented

Data taking with cosmics started last week with one PCB-doublet If  $ok \rightarrow$  we equip one  $1M^2$ 

### Status for M<sup>2</sup> detector

Big chamber was tested with small electronics board

PCB-doublet was tested

PCB-doublet on large detector is being tested

Fully equipped large detector to be soon tested



## **GRPC** activities

#### **Bologna-CERN**

#### MGRPC

5 glass plates of 400  $\mu$  each 4 gaps of 250  $\mu$  using fishing line as spacers and Licron as resistive coating

32X8 cm<sup>2</sup> MGRPC was built and tested with the SDHCAL electronics: see Vincent talk

1M<sup>2</sup> multigap GRPC was built and will be tested with the same 1M<sup>2</sup> SDHCAL electronics



# **GRPC** activities

Tsinghua University



Few small chambers will be tested with the SDHCAL In the next TB at cern.

 $10^{6} \sim 10^{9} \Omega.cm$ 



#### FSB0 scurves: HR1 /HR2 before and after gain correction



## **Readout electronics**



#### Preparation for the 1M<sup>3</sup> technological prototype

The aim is to come as close as possible to what we would like to have for ILC.

Technological prototype : 40 plans of 1M<sup>2</sup> : 16mm s.steel absorber 4mm s.steel support 6mm GRPC



#### Important points:

Semi-digital readout, mechanical structure, gas system DAQ, event building, data storage.

### Preparation for the 1M<sup>3</sup> technological prototype

- Pions with different energies were simulated to better understand the containment
- Analyses to exploit the three thresholds have started by having an idea of the energy/particles going in one pad
- Work has started to develop algorithms for energy reconstruction using the 3 thresholds
- Digitization should be worked out.





#### Preparation for the 1M3 technological prototype

#### Important issues:

- Mechanical structure: see Enrique talk, thermal study
- Gas system :
  - $\rightarrow$  Possibility to use BaBar drift chambers gas system
  - → Recycling and purification system are also worked out in collaboration with CMS-RPC (R.Guida)
- Software, data format : →ongoing work to have the 1M3 in mokka for the simulation
  - → developing the needed tools for clustering

# Conclusion

- Building ILC-like large GRPCs is now a controlled technique
- Electronics readout for 1M<sup>2</sup> is debugged and is almost ready
- Mechanical structure to hold GRPC+ equipped PCB is ready
- Another equipped 1M<sup>2</sup> with HR2 is in preparation
- The preparation for the 1M<sup>3</sup> is ongoing and construction should be start in second half of 2009.