

CERN 08 Test Beam Results on RPC sDHCAL

<u>Vincent Boudry</u> Robert Kieffer Khaled Belkadhi Imad Laktineh

CALICE meeting

19-20 Feb. 2009 Kyungpook Nat'l U., Daegu, Korea

Synoptic

- GRPC detectors
- TB & Data taking
 - ► CERN 08
- Mip efficiency & multiplicity analysis
 - vs HT, Threshold, position, gas, angle particle flux
- Start of hadronic shower
- Noise study
 - ► RPC, MGRPC
- Hints of Uniformity
- Time reconstruction
- Future plans

RPC Gaseous detector prototypes

- GRPC (IHEP, IPNL)
 - simple, robust, rate ≤ a few 100 Hz/cm²
 - 1.2 mm gas gap
 - 400 μm glass plate
 - Graphite/Licron/Statguard resistive cover
 - ~ 7.4 kV \rightarrow Avalanche mode
- Multi-gap RPC (INFN Bologna-CERN)
 - Higher rates & efficiency
 - Idem Alice ToF system
 - 4 x 250µm gas gaps
 - 400 μm inner glass plates
 - 550 μm ext. glass plates
 - ◆ ~ 10—12 kV

Pick-up pads

Vincent.Boudry@in2p3.fr Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

TFE93%Isobutane5% SF_6 2%

Graphite

θV

Resistive plates

GRPC response

- mip → 8-10 ionisations per mm
- exponential gain G ~ 10⁶⁻⁷
 - Sensitive only to the 1-2 first (from cathode) ionisations
 - ▶ Q ~ 3 pC
- Inductive readout

GRPC readout (Used for the lasts TestBeams)

Readout circuit boards "DHCAL1" developed by IPNL, LLR and LAL:

- \rightarrow 8 layers PCB, total thickness 800µm
- → ASICs: HARDROC1 (64 semi-digital channels)
- → 4 daisy chained ASICs on board
- \rightarrow **256** [(4×8)×8] sensitive pads (1×1 cm²)
- HARDROC's config parameters:
- Adjustable gain for each channel to calibrate
- Two thresholds (independent, per ASIC)

Data:

- LabView + USB based DAQ (~20 Hz for 4 boards)
- For each triggered ASIC: Timing Flag + Thresholds maps

Equivalence between digital threshold and charge

Linear dynamic range: 800fC

Detectors in test beam

- July-August 2008: 4 RPC 32×8 cm2
- November 2008: 5 RPC 32×8 cm2 (with one multi-gap RPC)

Beam test periods

PS: Mostly π (3-12 GeV) + few μ , very few e-

PS T10 17—24 july with the EUDET telescope: \sim 260k trig evts

- With EUDET Pixel Telescope: 7×7 mm² active sensors
- Angle & position scans
- Other data: trigger large scintillators (10×40 cm²)
- **PS T9**: 28/07 04/08
 - Complement Pion data with 2 λ of W, **angular** scan
 - Analogue readout of 1 chamber
 - Test of a wide RPC: 100×35 cm² (readout with 4 PCB $\Rightarrow \sim 32 \times 32$ cm²)

PS T9: 07/11 — 12/08

- Shared test with µMegas (≠set-up); Multi-Gap RPC
- Complement test: HV scan, thr. Scan, CO₂ (as repl. of Isobutane), Beam intensity scan
- **Tentative**: m² + 24 HR1 PCB + new DAQ elec & soft (DIF)

Vincent.Boudry@in2p3.fr Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

~65k trig evts

~80k trig evts

HV scan

Threshold: 120 fC Plateau: 7.2 — 8 kV Efficiency between 80 and 98% Best ratio Multiplicity/Efficiency: @ 7.4 kV

Variations for Graphite

- All solution ~ OK with a.h. HV
- Slight advantage for Licron®: lower multiplicity on plateau

Threshold scan

- Moving ASIC's threshold → Charge Spectra
- But the ASIC's dynamic range was too small,
 - ▶ possible with HaRDROC2 \rightarrow to be repeated
- Multiplicity: the effect of threshold is as expected.

Use of Eudet Pixel telescope @ CERN

Spatial efficiency using EuTel track reconstruction

Efficiency vs Impact Angle

Efficiency is quite constant, even for large angles. \rightarrow ideal for PFA: uniform particle response (ϵ , μ) in shower & at all angle in a large detector of the future experiment.

Gas : CO₂ vs Isobutane

These firsts tests using CO_2 , are quite promising.

Note: Complementary measurements have to be done to comfirm these results. Vincent.Boudry@in2p3.fr Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

Evolution of performances with particle flux

We made some correlations between flux measurement done with scintillators, and efficiency of the chambers.

It gives us some preliminary results about GRPC running in real beam conditions.

Note: The flux measurement was not very precise, we have to make some complementary measurements to confirm these results.

RPC vs. Multi-Gap RPCs

RPC & MGRPC

Preliminary results: Somewhat higher efficiency Very high multiplicity ⇒ useful for sDHCAL ?

2p3.fr Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

Hadronic showers

Hadronic shower are mostly not contained in Mini-DHCAL (~ $\frac{1}{2} \lambda_{I}$) \Rightarrow first idea of shower development and energy deposition.

Timing: single event + auto-trig

- CERN PS: 400 ms spills every 48 or 33s (day/night cycles).
- Running mode: single event with auto trig
 - + BUSY logic & automatic RAMFULL recovery (⊃ BUSY signal)

Time difference between hits in Asics

Time correlation between ASICs

Vincent.Boudry@in2p3.fr

Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

Noise & signal

The multi-gap RPC Chamber

Noise & efficiency study

V. Boudry

Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

1 gap GRPC Uniformity (A prelim A)

Very preliminary (global selection on noise)

- \Rightarrow Proof of principle
- ⇒ Hints of flatness of efficiency

1 ASIC History reconstruction

V. Boudry

Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

Full rec. spectrum

V. Boudry

Test Beam results on RPC sDHCAL — KNU, Daegu, 20 feb. 2009

Future plans

- Finish external triggered data analysis
 - vs environmental data (t°, P_{atm})
 - Shower development
 - clustering
 - Validate simulation & digitisation on data
- Finalise train reconstruction
 - ► → High stat of Hit (ijk, xyz, t, t_{prev}) {see Manqi's talk}
 - validation of data format completeness
 - Redo all analysis for checking +
 - Mapping
 - Time to previous ⇒ HV recovery behaviour
 - Check needed info for train analysis
- Publish...

Merci à...

- Nick Lumb
- Muriel Vander Donckt
- Christophe Combaret
- Rodolphe Della Negra
- Emmanuel Latour
- Marc Bedjidian
- Florent Schirra
- Alexis Eynard

- Clément Jauffret
- Manqi Ruan
- Mary-Cruz Fouz
- Enrique Alamillo
- Jesus Cresus