Analysis of PCB Irradiation Tests

Roman Pöschl
LAL Orsay

- Motivation
- Experimental Setup
- Data Samples
- Analysis and Results
- Summary, Conclusion and Outlook

Calice Collaboration Meeting Daegu/Korea Feb. 2009

Introduction

Calorimeter Electronics to be interleaved with layer structure

Do high energetic showers create signals directly in electronics ? If yes, Rate of faked signals ?

Special PCB in Ecal Prototype during CERN 07 testbeam - Experimental Setup I

Special PCB in Ecal Prototype during CERN 07 testbeam - Experimental Setup II

- PCB positioned at place of layer 12 in Ecal ~ shower maximum x, y position identical to layer 2
- Schematic view of test PCB - 'Expect' signals from 72 pads, $4 \times 18=2$ Wafer

Nominal positions of Chips

Scanning points

- 2.6 10^{6} Events with 90 GeV Electrons (-5.810^{5} with 70 GeV Electrons)

At least 70 K at each scanning point (Details see later)
Runs 331462-331518
Today: Analysis of 10k Events per analysed run (nearly) Full Statistics

- First Step: Runs were subject to the same data processing chain as 'usual' runs Calice Collaboration Meeting Feb. 2009

First Steps of Data Analysis - Alignment Studies
Beam Impact at nominal center of Chip $1(-8.33,0) \mathrm{cm}$

Layer_3_hist
 Looks like we've shot a bit too high and too close to the Ecal Border

First Steps of Data Analysis - Rough Alignment Studies 70 GeV e- - Beam Impact at nominal center of Chip $1(-8.33,0) \mathrm{cm}$

Layer_14_hist

Projection of

 Center of Chip1 onto layer 14

- Small Activity in Layer 12

Basic Spectra (for 10k Events)

First Steps of Data Analysis - Rough Alignment Studies

Layer_2_hist

Projection of Center of Chip1 onto layer 2

Layer_3_hist

Change in impact position clearly visible Calice Collaboration Meeting Feb. 2009

First Steps of Data Analysis - Alignment Studies

Projection of Center of Chip1 onto layer 2

Layer_15_hist

- Chip 1 well 'touched' by shower cbre
- Small Activity in Layer 12 (bit larger than for 70 GeV and 'nominal' Center)

Basic Spectra (10k Events)

70 GeV -> 90 GeV Layer 12 outside of shower maximum
Calice Collaboration Meeting Feb. 2009

So far all runs have been reconstruction using usual reco software

Now

Discarding all (Offline) Pedestal Corrections

- Methodology:

Subdivision of Runs into BeamTrigger and Pedestal Trigger Events (Oscillator Trigger) interleaved with beam events

Expectation no difference between spectra in the both cases

Statistics of Analysis

Scan 3

Run331495: e-?? GeV
Signal: 314275 Evts.
Pedestal: 15264 Evts.

Run331498: e- 90 GeV
Signal: 66655 Evts.
Pedestal: 4223 Evts.

Signal: 214418 Evts. Pedestal: 13666 Evts.

Run331494: e- 90 GeV Signal: 65249 Evts. Pedestal: 3602 Evts.

Run331474: e- 90 GeV Signal: 85884 Evts. Pedestal: 4949 Evts.

Scan 1

Run331473: e-70 GeV
Signal: 208885 Evts.
Pedestal: 38295 Evts.

Run331471: e- 70 GeV
Signal: 10879 Evts.
Pedestal: 1950 Evts.

Run331472: e- 70 GeV Run331478: 90 e- GeV Signal: 189966 Evts. Pedestal: 37137 Evts.

Signal: 65249 Evts. Pedestal: 3602 Evts.

Scan 4

Run331513: e- 90 GeV
Signal: 216877 Evts.
Pedestal: 38295 Evts.

Run331518: e-90 GeV
Signal: 90395 Evts.
Pedestal: 4347 Evts.

Run331516: e- 90 GeV Signal: 228138 Evts. Pedestal: 10926 Evts.

Run331511: e-?? GeV Signal: 86989 Evts. Pedestal: 3909 Evts.

Run331512: e- 90 GeV Signal: 218519 Evts. Pedestal: 9462 Evts.

Scan 2

Run331488: e- 90 GeV

Signal: 213369 Evts. Pedestal: 13719 Evts.

Run331480: e- 90 GeV
Signal: 85188 Evts.
Pedestal: 4678 Evts.

Run331486: e- 90 GeV
Signal: 129778 Evts.
Pedestal: 6146 Evts.

Run331491: e- 90 GeV
Signal: 217711Evts.
Pedestal: 11053 Evts.

Run331492: e- 90 GeV Signal: 89435Evts. Pedestal: 4254 Evts.

On Run Selection and Observations

- Run Selected according to entries in the logbook No comments on bad quality by Shift Crew
- Switch of energy between Run 331473 and Run 331478
- Change in Pedestal Rate
20% of all events -> 5% of all events
Still at least 3500 of (valuable) pedestal events
- at least 70 at each point
- ... but Run 331471 poor statistics 10k (can be increased by using 331470) very first scanning point
- mostly 90 kEvents for off center runs
- > 200k at (nomincal) Chip Center

Noise Spectra Scan 1
Scan ID

Signal Events Pedestal Events

Noise Spectra Scan 2
Scan ID

Discussion of Noise Spectra

Disclaimer will show only a selection of plots

- Full set of scan plots in Annex to talk
- First Order: No difference between signal and pedestal events visible
- Signal looks slightly shifted w.r.t pure Pedestal events Larger tails
Number of Hits above MIP threshold O(10-5)
- No obvious dependency on scan position
- Next step - Test "gaussianess" of a signal

Expectation: Pedestal events should lead to pure Gaussian noise distribution
Method: Determine $x^{2} / n d f$ for different fit ranges
Fit Ranges: $(-4,4),(-8,8),(-12,12),(-16,16)$ ADC Counts

Signal/5 ADC Counts Pedestal

Signal/5 ADC Counts Pedestal

Discussion of Gaussian Behaviour of Noise Spectra

- Clear tendency observed

Noise spectra in Layer 12 much less gaussian in Signal Events than in Pedestal events
Average $x^{2} /$ ndf in Pedestal events ~ 3
Remember $x^{2} /$ ndf for Signal Events has been divided by 5

But ... no dependency on scan position visible!!!

- Chips are obiously sensitive to activity in detector when energy is deposited
Small Insulation problem?
- Next step: Quantify global changes between signal and pedestal events
Back to mean and rms
as gaussian is maybe not a meaningful quantity

Average Mean and RMS for Scan 1

Difference normalized to MIP =>
Global effect 1\% of MIP

Difference normalized to MIP
= >
Global
effect
$<0.5 \%$ of MIP

Calice Collaboration Meeting Feb. 2009

Average Mean and RMS for Scan 2

Difference normalized to MIP =>
Global effect 1\% of MIP

Difference normalized to MIP
=>
Global
effect
$<0.5 \%$ of MIP

Calice Collaboration Meeting Feb. 2009

Average Mean and RMS for Scan 3

Average Mean and RMS for Scan 4

Summary, Conclusion and Outlook

- Analysis of PCB Irradiation test extended to (nearly) full statistics
- \#Events beyond 1 MIP appear at $\mathrm{O}\left(10^{-5}\right)$

No evidence that shower particles create fake hits in detector

- Energy deposit in detector distorts the gaussian noise spectrum
- Small sensitivity to detector load, Floating currents etc.
- Let usual noise very rarely fluctuate above MIP threshold (45 ADC Counts)
- Global effect of parisitic signals (whereever they come from) is O(1\% of a MIP) on the average signal and not measurable in the width i.e. rms of the detector noise (Which is also good news for all other SiW Ecal Analyses)
- All observed effects seem to be independent of scan position
- Plan to report presented results as contributed paper to TIPP09
- Paper for NIM should be accompanied by a simulation study First ideas exchanged with Christoph

Annex: Noise Spectra

Scan 1

Scan 1

Scan 2

Scan 2

Scan 3

Scan 3

Scan 4

Scan 4

