

Analysis of PCB Irradiation Tests

Roman Pöschl LAL Orsay

- Motivation
- Experimental Setup
- Data Samples
- Analysis and Results
- Summary, Conclusion and Outlook

Calice Collaboration Meeting Daegu/Korea Feb. 2009

Calice Collaboration Meeting Feb. 2009

Introduction

Calorimeter Electronics to be interleaved with layer structure

Do high energetic showers create signals directly in electronics ? If yes, Rate of faked signals ?

Calice Collaboration Meeting Feb. 2009

Special PCB in Ecal Prototype during CERN 07 testbeam – Experimental Setup I

Prepared Slab

- W dummy

- capton and paper for electrical shielding

Usual Slab

Special PCB in Ecal Prototype during CERN 07 testbeam – Experimental Setup II

- PCB positioned at place of layer 12 in Ecal \sim shower maximum x,y position identical to layer 2
- Schematic view of test PCB 'Expect' signals from 72 pads, 4x18 = 2 Wafer

- 2.6 10⁶ Events with 90 GeV Electrons (- 5.8 10⁵ with 70 GeV Electrons) At least 70 K at each scanning point (Details see later) Runs 331462 – 331518 Today: Analysis of 10k Events per analysed run (nearly) Full Statistics
- First Step: Runs were subject to the same data processing chain as 'usual' runs Calice Collaboration Meeting Feb. 2009

First Steps of Data Analysis – Alignment Studies

Beam Impact at nominal center of Chip 1 (-8.33,0) cm

70 GeV e- - Beam Impact at nominal center of Chip 1 (-8.33,0) cm Layer_12_hist Layer 13 hist 18E 2.5 Ghost Hit? 16 Hits 1.5 Layer 12 0.5 Layer_14_hist Layer_15_hist 18 F 18 F Projection of Center of Chip1 onto layer 14 ____2000 - Chip 1 well 'touched' by shower maximum eb. 2009 - Small Activity in Layer 12

First Steps of Data Analysis – Rough Alignment Studies

Basic Spectra (for 10k Events)

Basic Spectra (10k Events)

So far all runs have been reconstruction using usual reco software

Now

Discarding all (Offline) Pedestal Corrections

- Methodology:

Subdivision of Runs into BeamTrigger and Pedestal Trigger Events (Oscillator Trigger) interleaved with beam events

Expectation no difference between spectra in the both cases

Statistics of Analysis

On Run Selection and Observations

- Run Selected according to entries in the logbook No comments on bad quality by Shift Crew
- Switch of energy between Run 331473 and Run 331478

Change in Pedestal Rate
20% of all events -> 5% of all events
Still at least 3500 of (valuable) pedestal events

- at least 70 at each point

- ... but Run 331471 poor statistics 10k (can be increased by using 331470) very first scanning point
- mostly 90 kEvents for off center runs
- > 200k at (nomincal) Chip Center

Noise Spectra Scan 1

Scan ID

Signal Events Pedestal Events

Discussion of Noise Spectra

Disclaimer will show only a selection of plots

- Full set of scan plots in Annex to talk
- First Order: No difference between signal and pedestal events visible
- Signal looks slightly shifted w.r.t pure Pedestal events Larger tails Number of Hits above MIP threshold O(10⁻⁵)
- No obvious dependency on scan position
- Next step Test "gaussianess" of a signal

Expectation: Pedestal events should lead to pure Gaussian noise distribution Method: Determine χ^2 /ndf for different fit ranges Fit Ranges: (-4,4), (-8,8), (-12,12), (-16,16) ADC Counts

"Gaussianness" in Scan 1

Signal/5 ADC Counts **Pedestal**

"Gaussianness" in Scan 2

Signal/5 ADC Counts **Pedestal**

"Gaussianness" in Scan 3

Signal/5 ADC Counts Pedestal

"Gaussianness" in Scan 4

Signal/5 ADC Counts **Pedestal**

Discussion of Gaussian Behaviour of Noise Spectra

- Clear tendency observed

Noise spectra in Layer 12 much less gaussian in Signal Events than in Pedestal events Average χ^2 /ndf in Pedestal events ~3 Remember χ^2 /ndf for Signal Events has been divided by 5

But ... no dependency on scan position visible!!!

 Chips are obiously sensitive to activity in detector when energy is deposited
Small Insulation problem?

 Next step: Quantify global changes between signal and pedestal events
Back to mean and rms as gaussian is maybe not a meaningful quantity

Average Mean and RMS for Scan 1

No dependency on scan position visible

Average Mean and RMS for Scan 2

No dependency on scan position visible

Average Mean and RMS for Scan 3

No dependency on scan position visible

No dependency on scan position visible

Summary, Conclusion and Outlook

- Analysis of PCB Irradiation test extended to (nearly) full statistics
- #Events beyond 1 MIP appear at O(10⁻⁵)

No evidence that shower particles create fake hits in detector

- Energy deposit in detector distorts the gaussian noise spectrum
 - Small sensitivity to detector load, Floating currents etc.
 - Let usual noise very rarely fluctuate above MIP threshold (45 ADC Counts)
- Global effect of parisitic signals (whereever they come from) is O(1% of a MIP) on the average signal and not measurable in the width i.e. rms of the detector noise (Which is also good news for all other SiW Ecal Analyses)

- All observed effects seem to be independent of scan position

- Plan to report presented results as contributed paper to TIPP09
- Paper for NIM should be accompanied by a simulation study First ideas exchanged with Christoph

Calice Collaboration Meeting Feb. 2009

Annex: Noise Spectra

