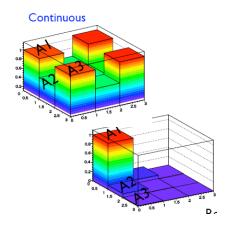
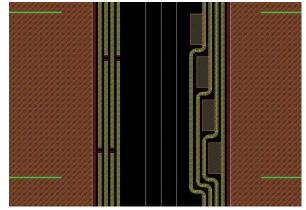


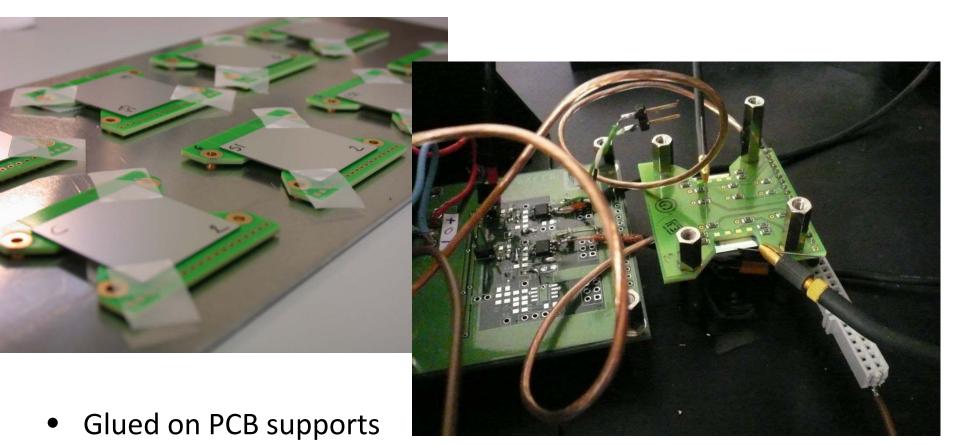
Si-W ECAL Silicon wafers status

🔬 🗤 week at Deagu, Febuary 19-20 2009, Rémi Cornat


Si overview


- Cz and Rus used on the prototype (low cost, standard design)
 - Ok : Depletion, current leakage, signal
 - 500 nm, 6x6 cm², 26 pads
 - Square events : understood to come from guard rings
- Search for new design techniques
 - Reducing crosstalk due to the GR
 - Segmented guard rings to avoid square events
 - Lowering Dead space (at the border)
- Hamamatsu design
 - New size ordered: 300 nm, 9x9 cm², 256 pads
 - Sold as having no guard rings (thus no square events)
 - Have guard rings ! External charge injection shows square events...
 - Large dead space
 - Behavior with glue checked over 8 months : OK
 - Cost of prototypes: 70 k€ = 40 wafers, not enough for EUDET

NEW : Prototypes are measured !


Segmented guard rings

- Should avoid the signal propagation along the border of the wafer
- Idea tested thanks to PCBs and test bench at LPC (CALOR'08, NSS-MIC'08 talk)
 - Segmented topology helps to prevent SqEvt
- Prototype wafers are being manufactured (LLR made layout)
 - OnSemi/Institute of Physics (Prague), Cz
 - Current leackage can now be measured
 - Together with crosstalk
- First 8 wafers were measured at LPC

Segmented guard rings prototypes

• Mesured with signal injection and charge amplifiers

Segmented guard rings prototypes preliminary measurements results

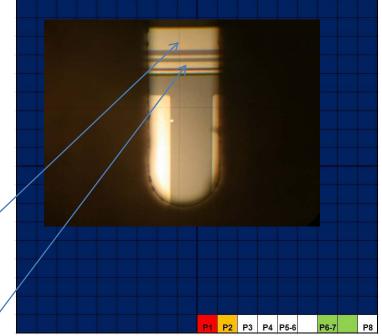
• The segmentation of guard rings clearly contributes to the lowering of crosstalk along the edge of the wafers

Continuous			_	1 cm segments				3 mm segments			
	720										
И	430	220			528	32		1	170	17	
	700	460			50	32	31		29	14	13

- I(V) characteristics are not standard
- Breakdown occurs early, in a 100-300 V range (non segmented: >500 V)
- BUT: no optimizations were done on the layout
 - Further investigations are needed
 - Close contacts with Onsemi: agreement to share the costs

Hamamatsu wafers

- 9x9 cm2, 256 pixels ordered, 40 should be delivered on April
- Cost ! (eur/yen parity)
- 300 um (may be) gained on the edges
 800 um dead space (1.1 mm in previous version)
- Excellent breakdown >800 V
- Low leakage <4 nA/pixel
 - DC coupling to the chips
 - 1 nA = 1% dynamic range
- Good dC/dV at Vbias, <2pF/V (full wafer)
 - Mandatory for noise (CdV + VdC)
 - C= 10E-12, dV=10 mV, V=150V, dC = 20 fF
 ~400 MIPs...


Hamamatsu wafers : crosstalk measurements

Charge is injected on the metal rings: a similar behavior as for square events is measured. Compared to PCB models with continuous guard rings :

Factor 4 less for the outer guard ring
Factor 50 less for the inner guard ring
Square events are expected !

Pixel ID	Amplitude
P1	1030
P2	1060 (mV)
P6-7	2080

Pixel ID	Amplitude (mV)
P1	80
P2	63
P6-7	111

But signal (charge) is injected at the surface. What if charge is generated in the volume below the rings ?

It needs further investigations with particles or laser beam

Layout: Some optimizations

3D sensors : lower Vbias, internal current flow, low sensibility to edge effects : can be ~edgeless (100 um)

tor Vertex detectors Cut through edge

Integration same technology as for 3D but used only at the edge no saw cuts, 3D edges 4-side abuttable ~*no dead space*, Deep trench etch, n doped polysilicon fill provides edge doping

Trenches + saw cut : cost of trenching, post processing of every sensors, bad control of current.

Dry etching cut

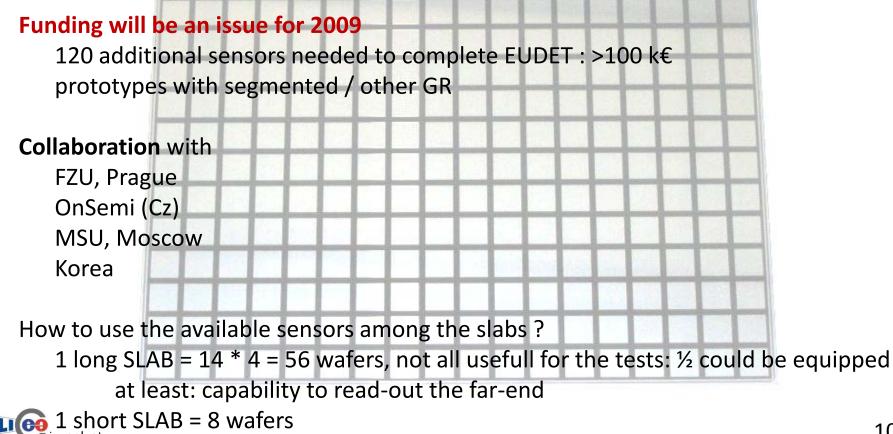
Cost

Current terminating ring two rings but biased : thin contact needed, gluing not applicable edge width less than ¹/₂ wafer thickness **Double sided GR Doped edges** Crosstalk + ~edgeless ③ (300 um) **Punch-through biasing** Integration 😕 **Biased GR** edge 🙁 (800 um) Segmented GR : need further tests week at Deagu, Febuary 19-20 2009, Rémi Cornat

Front end board

- Hamamatsu wafer will have pads to bias the GR in order to avoid crosstalk (if necessary)
 - FEV7 to be adapted for bounding (holes)

- Prototype for a definitive solution (additional cost) if segmented/other do not work
- FLCPHY3 should be used for crosstalk measurements
 - Instead of Op. Amp.
 - Upgrade of test bench at LPC
 - measurements with laser or beam


week at Deagu, Febuary 19-20 2009, Rémi Cornat

ECAL Silicon wafers : Conclusion

^{In2p3} Hamamatsu wafers expected on Q2'09 (NRE 31k€ + 1k€/sensor) despite some uncertainties on crosstalk (~OK) In touch (or at least try) with other manufacturers (ONsemi, Russia, Korea,...)

Segmented guard ring to be tested on full size wafers + with beam

R

