# AHCAL Longitudinal Profiles and Leakage 

Experiences with MC
Generation for Hadrons


## Content

Finding the First Interaction Measuring and Correcting Leakage Monte Carlo Generation for the AHCAL Study of Different Physics Models

Calorimeter for IL

## Shower Starting Point



## Response Correction




- detector response drops with depth of first interaction due to leakage
- knowing the response allows to correct event by event for leakage
- improves linearity
- should give superior resolution to only energy based correction


## Effect of Correction




- offset in calibration reduced
- higher response (esp. for high beam energies)
- result for resolution not yet conclusive
- comparison of relative width would be wrong
- need to compare with alternative method for linearity correction


# Monte Carlo Simulation of pions in the AHCAL 

## Issues When Generating MC

- particle beam
- momentum, momentum spread
- spatial distribution
- multiple scattering
- detector
- saturation, statistical smearing optical crosstalk
- scintillator effects (Birks')
- varying calibration (temperature)
- electronics
- limited record time
$\sqrt{ }$ time-cut implemented in Mokka
- choice of physics model
- to which effects is it sensitive


## Testing of Birks' and Time Cut



- Birks'
- 25\% reduction of visible energy
- more realistic (worse) resolution
- time-cut
- $5 \%$ reduction of visible energy
- improves resolution further




## Physics Models Response \& Resolution (high energy)






## Physics Models - Profiles (high energy)






## Physics Models Response \& Resolution (low energy)






## Physics Models - Profiles (low energy)






## Observations for Models

8 GeV to 15 GeV

- LHEP
- not enough visible energy
- poor description of resolution
- FTF BIC
- shows too much visible energy
- gives too good resolution
- QGSP BERT
- good visible energy description
- perfect resolution
- reasonable matching of profiles
- by far best matching model


## 20 GeV to 80 GeV

- LHEP
- best description of total energy
- poor description of resolution
- FTF BIC
- shows too much visible energy
- resolution well described
- QGSP BERT
- shows too much visible energy
- resolution well described
- still best matching model
- all
- fail to describe shower maximum


## Inside Geant4


A. Ribon @ NSS - IEEE Dresden 2008


- Several models implemented
- parametrized (LEP, HEP)
- theory driven (CHIPS, BERT, QGS, BIC)
- No model covers full energy range
- physics lists combine models
- transition regions


## known features <br> - LHEP <br> - lowest response <br> - worst energy resolution <br> - good longitudinal profile

- FTF BIC
- too much energy
- better proton profiles
- discontinuity @ 5GeV
- QGSP BERT
- best for
- response
- resolution
- $e / \pi$
- bad proton profiles
- discontinuities 10-25 GeV


## Summary

- The method to correct for longitudinal leakage knowing the shower start was applied for beam Energies between 8 GeV and 80 GeV
- Results show an improvement in response
- The effect on the resolution is still under investigation
- A full set of Monte Carlo simulations is available
- Several important improvements in simulation, digitization and reconstructions lead to more realistic predictions
- Birks'
- time-cut
- temperature effects
- The response and profiles from the leakage analysis are used to compare the prediction of several Geant4 physics lists


## Backup

## The Summing Problem

- saturation in the scintillator (Birks' Law)
- nonlinear relation between deposited energy and scintillation light
- once cell can have several deposits with different intensities
- timing of electronics
- time window is defined by primary particle (trigger)
- energy deposits in the shower will be distributed over some time
- one cell can have several hits at different times
rather detector effects than physics but digitization (currently) has no access to individual energy deposits
$\rightarrow$ use Birks' implementation in Geant4
$\rightarrow$ use time-cut already in simulation

integrated signal versus time


Some More Remarks

- LHEP
- comparable small sensitivity to Birks'
- no sensitivity to time cut
- QGSP BERT
- strong sensitivity to Birks'
- sensitive to time cut


## MC-generation

- many initial parameters
- more tools necessary
- some code seems not reliable (TBTrack)
- huge progress in digitization understanding \& tools
- Birks'
- time cut
- temperature
- TCMT is only partly integrated into the developments


## Shaping and Time



## Geant4 9.1 vs. 9.2



QGSP



