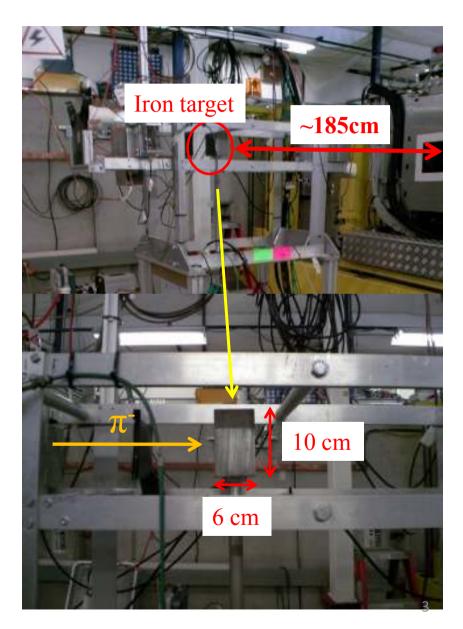
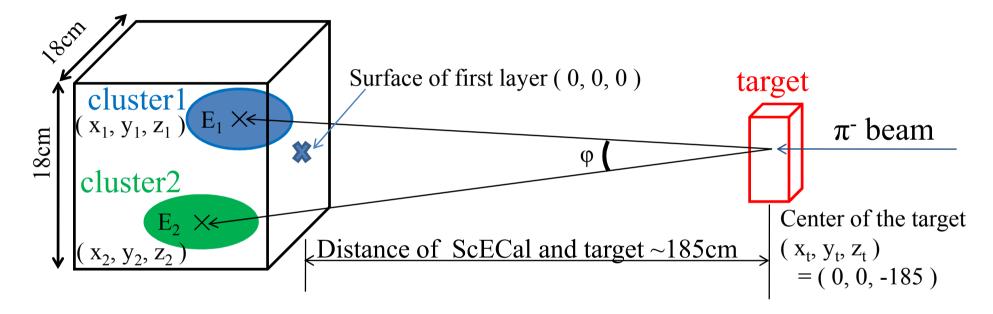
The Results of ScECAL FNAL-TB \sim Reconstruction of $\pi^0 \sim$

CALICE collaboration Meeting, Daegu 20 February 2009 CALICE ScECAL group Yuji SUDO, University of Tsukuba


Outline

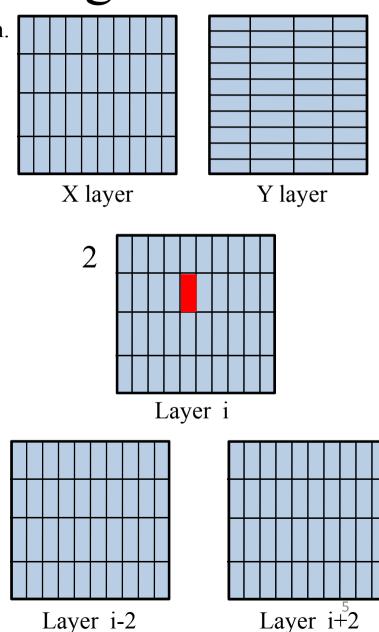
- Setting for production of π^0
- Method of strip clustering
- Event selection
- Result of π^0 reconstruction
- Summary


Setting for production of π^0

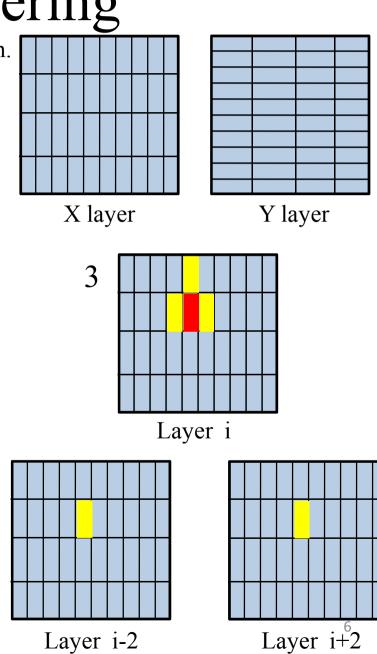
- To produce π⁰, π⁻ beam was injected into Iron target.
- Size of the Iron target : 10x10 cm², thickness 6 cm
- The Iron target was put in ~185 cm upstream of ScECal.
 (The distance of EMCAL from interaction point is 185 cm.)
 - Number of triggered events 16 GeV 419,114 events 25 GeV 341,882 events 32 GeV 337,838 events

In total 1,098,834 events

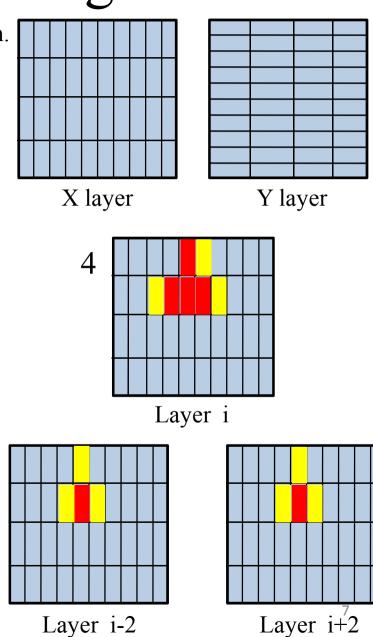
Reconstruction of Invariant Mass in 2 γ system

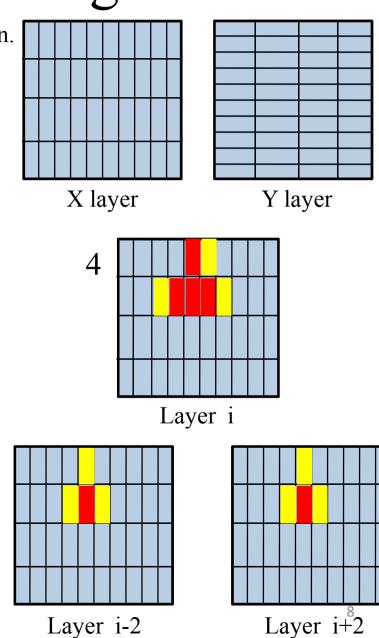


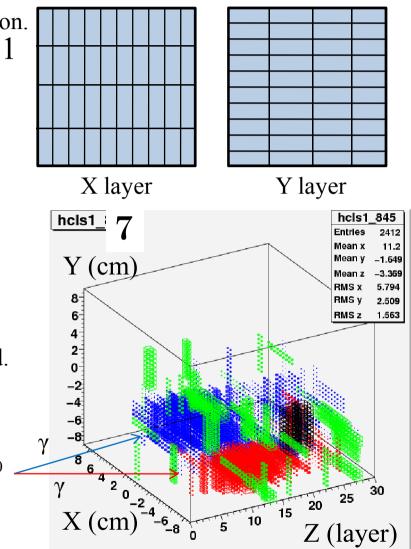
(Invariant Mass) = sqrt($2*E_1*E_2*(1-\cos(\phi))$)


In case two gammas have equal energy	In case two	gammas	have equal	l energy,
--------------------------------------	-------------	--------	------------	-----------

Energy of π^0 (GeV)	3	4	5	10	15
Distance of two clusters (cm)	16.7	12.5	10.0	5.0	3.3


- 1. Define X and Y layers according to strips orientation.
- 2. Select a strip which has the largest output in X layers. The strip is called seed strip.
- 3. Connect seed strip and the neighbor strips (upper, lower, left, right, forward and backward) (E of neighbor strip <= 1.2*(E of seed strip))</p>
- 4. Connected strips are defined as new seeds. Repeat 3 until no more neighbor strip remains.
- 5. Using other strips, repeat 2 4.
- 6. For Y layers, make clusters using the same method.
- 7. Finally, the Y cluster is connected to the X cluster, in case energy center of a cluster in Y layers is located within +- 2.85 cm in X and Y from energy center of a cluster in X layers.
- ** This strip clustering is not the official algorithm for ScECal.


- 1. Define X and Y layers according to strips orientation.
- 2. Select a strip which has the largest output in X layers. The strip is called seed strip.
- 3. Connect seed strip and the neighbor strips (upper, lower, left, right, forward and backward) (E of neighbor strip <= 1.2*(E of seed strip))</p>
- 4. Connected strips are defined as new seeds. Repeat 3 until no more neighbor strip remains.
- 5. Using other strips, repeat 2 4.
- 6. For Y layers, make clusters using the same method.
- 7. Finally, the Y cluster is connected to the X cluster, in case energy center of a cluster in Y layers is located within +- 2.85 cm in X and Y from energy center of a cluster in X layers.
- ** This strip clustering is not the official algorithm for ScECal.

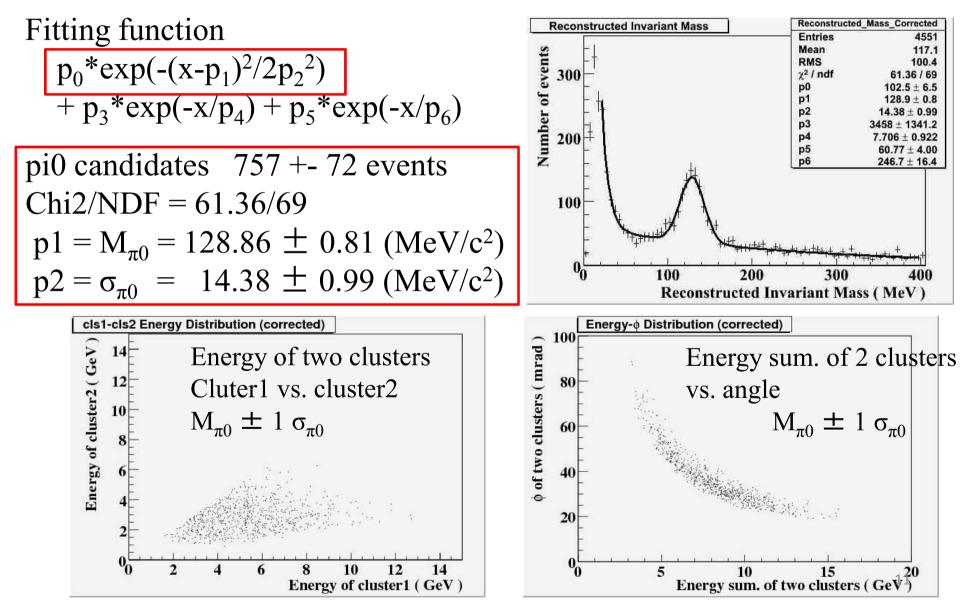

- 1. Define X and Y layers according to strips orientation.
- 2. Select a strip which has the largest output in X layers. The strip is called seed strip.
- 3. Connect seed strip and the neighbor strips (upper, lower, left, right, forward and backward) (E of neighbor strip <= 1.2*(E of seed strip))</p>
- 4. Connected strips are defined as new seeds. Repeat 3 until no more neighbor strip remains.
- 5. Using other strips, repeat 2 4.
- 6. For Y layers, make clusters using the same method.
- 7. Finally, the Y cluster is connected to the X cluster, in case energy center of a cluster in Y layers is located within +- 2.85 cm in X and Y from energy center of a cluster in X layers.
- ** This strip clustering is not the official algorithm for ScECal.

- 1. Define X and Y layers according to strips orientation.
- 2. Select a strip which has the largest output in X layers. The strip is called seed strip.
- 3. Connect seed strip and the neighbor strips (upper, lower, left, right, forward and backward) (E of neighbor strip <= 1.2*(E of seed strip))</p>
- 4. Connected strips are defined as new seeds. Repeat 3 until no more neighbor strip remains.
- 5. Using other strips, repeat 2 4.
- 6. For Y layers, make clusters using the same method.
- Finally, the Y cluster is connected to the X cluster, in case energy center of a cluster in Y layers is located within +- 2.85 cm in X and Y from energy center of a cluster in X layers.
- ** This strip clustering is not the official algorithm for ScECal.

- 1. Define X and Y layers according to strips orientation.
- 2. Select a strip which has the largest output in X layers. The strip is called seed strip.
- 3. Connect seed strip and the neighbor strips (upper, lower, left, right, forward and backward) (E of neighbor strip <= 1.2*(E of seed strip))</p>
- 4. Connected strips are defined as new seeds. Repeat 3 until no more neighbor strip remains.
- 5. Using other strips, repeat 2 4.
- 6. For Y layers, make clusters using the same method.
- 7. Finally, the Y cluster is connected to the X cluster, in case energy center of a cluster in Y layers is located within +- 2.85 cm in X and Y from π^0 energy center of a cluster in X layers.
- ** This strip clustering is not the official algorithm for ScECal.

Event Selection for 2 γ Events

1. Select EM shower events.


2. Select 2 γ events using cluster information.

	π ⁻ 16GeV	25GeV	32GeV	total
All events	419,114	341,882	337,838	1,098,834
 > 50 MIPs, > 30 hits (in front half), > 60% of total E (in front half) 	83,319	66,823	65,856	215,998
clsx=2 & clsy=2 *	11,594	12,688	14,928	39,165
40% <= Ecls1 <=85% **	9,540	9,820	11,302	30,662
15% <= Ecls2 <=60%	8,396	9,099	10,572	28,067
Ecls3 <= 5%	2,957	3,038	3,382	9,377
Sum. E other cls <= 13%	2,691	2,819	3,134	8,644
-7 <= cluster center <= 7 cm	1,549	1,418	1,584	4,551

* X and Y clusters have energy more than 8% of E_{tot} of ScECal.

** Energy ratio of cluster and total energy of ScECal. E_{cls} / E_{tot}

Reconstructed Invariant Mass from 2 Clusters Result of TB

Event Selection for 2 γ Events , Result of Mokka

We simulated ScECal TB by Mokka with TB geometry.

And we are preparing to release the ScECal module for Mokka.

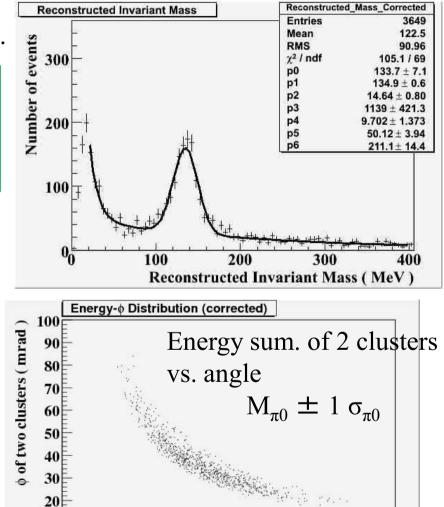
- 1. Select EM shower events.
- 2. Select 2 γ events using cluster information.

	π- 16GeV	25GeV	32GeV	total	
All events	267,000	241,252	200,141	708,393	
 > 50 MIPs, > 30 hits (in front half), > 60% of total E (in front half) 	41,701	50,598	44,283	136,582	
clsx=2 & clsy=2 *	6,641	12,275	11,884	30,800	
40% <= Ecls1 <=85% **	5,381	9,615	9,173	24,169	
15% <= Ecls2 <=60%	4,856	9,044	8,708	22,608	
Ecls3 <= 5%	1,725	3,173	2,932	7,830	
Sum. E other cls <= 13%	1,683	3,052	2,776	7,511	
-7 <= cluster center <= 7 cm	781	1,475	1,393	3,649	

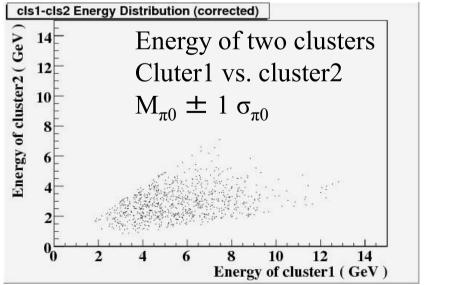
* X and Y clusters have energy more than 8% of E_{tot} of ScECal.

** Energy ratio of cluster and total energy of ScECal. E_{cls} / E_{tot}

Reconstructed Invariant Mass from 2 Clusters


10

5


Mokka for ScECal

Saturation effect of MPPC doesn't be included.

Chi2/NDF = 105.1/69 p1 = $M_{\pi 0}$ = 134.93 ± 0.64 (MeV/c²) P2 = $\sigma_{\pi 0}$ = 14.64 ± 0.81 (MeV/c²)

10

20

15

Energy sum. of two clusters (GeV

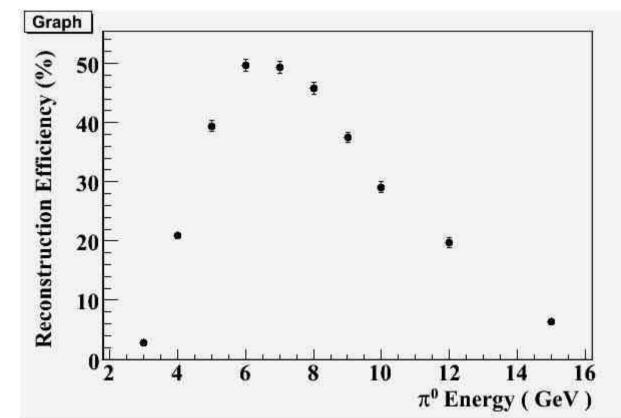
Summary

- Tried to reconstruct the invariant mass of pi0 with scintillator strip EM calorimeter.
- Result of Test Beam

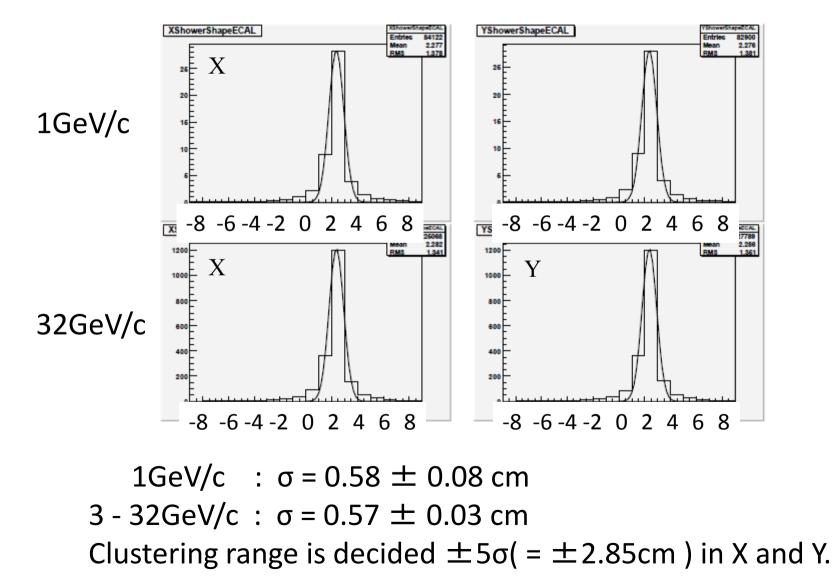
 $M_{\pi 0} = 128.86 \pm 0.81 \text{ (MeV/c}^2)$ $\sigma_{\pi 0} = 14.38 \pm 0.99 \text{ (MeV/c}^2)$

- Result of Mokka (without MPPC effect) $M_{\pi 0} = 134.93 \pm 0.64 \text{ (MeV/c}^2)$ $\sigma_{\pi 0} = 14.64 \pm 0.81 \text{ (MeV/c}^2)$
- We can reconstruct the invariant mass of π^0 meson.
- But there is 4.5% deviation for π^0 mass.

* Calibration has not finished yet.


* Clustering algorithm needs to be optimized .

Backup

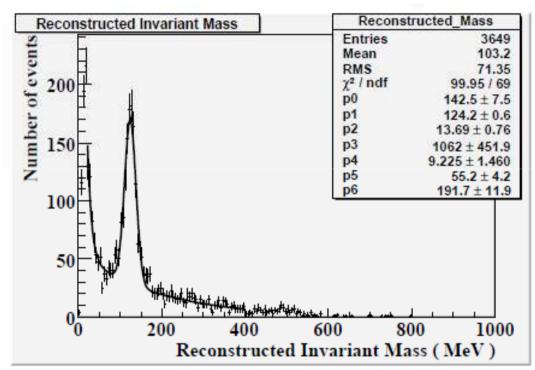

Reconstruction efficiency for π^0

Result of reconstruction efficiency using strip clustering as I showed before. We generated $3 \sim 15$ GeV π^0 by Mokka and apply exact same event selection for TB.

Ε _{π0} (GeV)	3	4	5	6	7	8	9	10	12	15
Efficiency (%)	2.76	20.9	39.4	49.7	49.4	45.8	37.5	29.1	19.7	6.31
Uncertainty (%)	0.24	0.6	0.9	1.0	1.0	1.0	0.9	0.9	0.8	0.51

Shower Shape of γ in X and Y

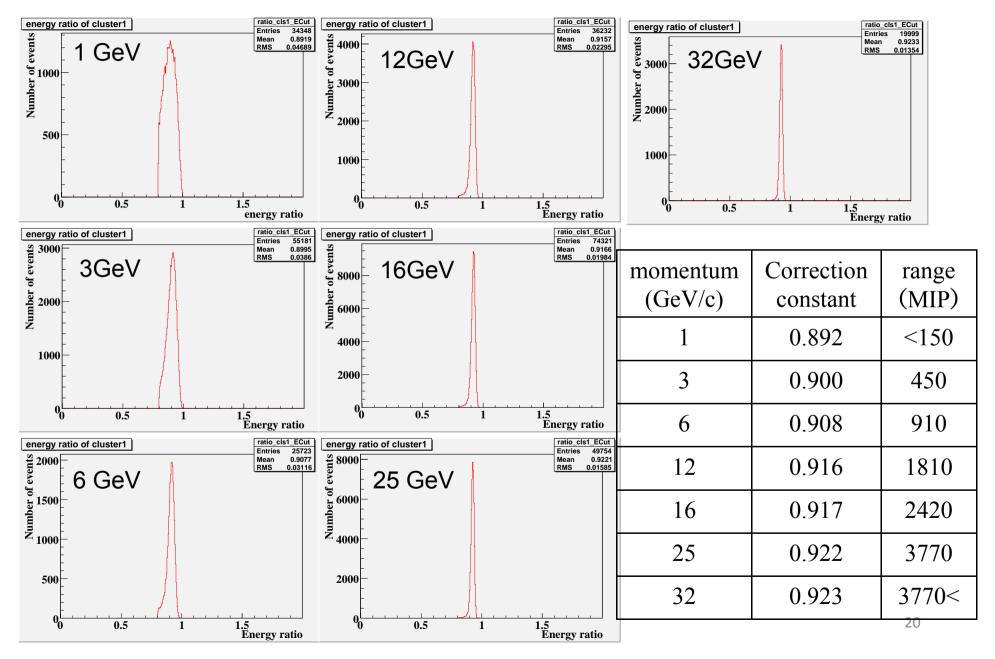
17


Reconstructed Invariant Mass from 2 Clusters before cluster energy correction Result of TB

Reconstructed Mass **Reconstructed Invariant Mass** Entries 4551 Number of events Mean 94.48 RMS 77.42 γ^2 / ndf 64.88 / 69 300 $\mathbf{p}\mathbf{0}$ p1 p2 59 ± 0.95 p3 p4 +1.092200 p5 64.23 ± 4.46 **p**6 232.1±15.3 100 200 800 1000 400600 Reconstructed Invariant Mass (MeV)

Chi2/NDF = 64.88/69 p1 = $M_{\pi 0}$ = 115.78 ± 0.75 (MeV/c²) p2 = $\sigma_{\pi 0}$ = 13.59 ± 0.95 (MeV/c²)

Reconstructed Invariant Mass from 2 Clusters before cluster energy correction


Result of Mokka

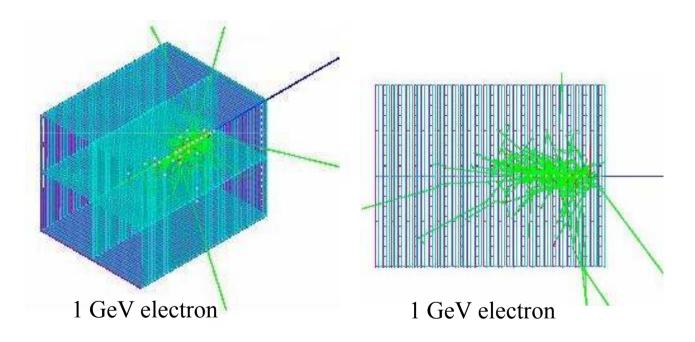
Chi2/NDF = 64.88/69

$$p1 = M_{\pi 0} = 124.22 \pm 0.59 \text{ (MeV/c}^2)$$

 $p2 = \sigma_{\pi 0} = 13.69 \pm 0.76 \text{ (MeV/c}^2)$

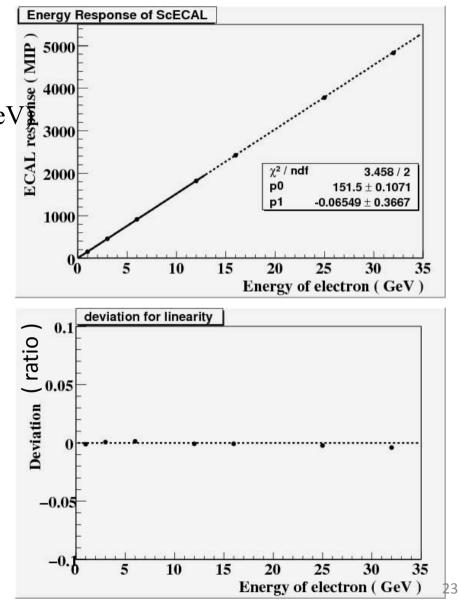
Energy of Cluster and correction constant

Correction for Cluster Energy


Ratio of the cluster energy and total energy of ScECal for e^- is defined as a correction constant.

In case cluster energy is 1.5 GeV, complement the correction constant between 1 and 3 GeV with linear function.

Ecls1 is energy of cluster1, Ecls2 is energy of cluster2, correction constant for each clusters are c1 and c2, ϕ is angle between clusters,


$$M_{\gamma\gamma} = \sqrt{2} E_{cls1}/c1 E_{cls2}/c2 (1-\cos\varphi)$$

Mokka ScECal Event Display

ScECal Response for e⁻ (Mokka)

- Saturation effect of MPPC doesn't be
- Saturation effect of MPPC doesn't be included.
 Fitting result for linear function (1 ~ 12 GeV) (ScECal response) = aX(GeV) + b MIP a = 151.49 ± 0.11 MIP/GeV $b = -0.07 \pm 0.37 MIP$
- Deviation from linearity $\sim 0.4\%$

