Data Quality -Tools and Results

CALICE Collaboration Meeting, Daegu, 19 - 20 February 2009

Nils Feege Andrea Vargas Serguei Morozov

presented by Niels Meyer

Universität Hamburg

Outline

- The Data Quality Chain
- Drift Chamber Efficiency
- Beam Composition
- HCAL Operation Stability
- Open Issues
- Summary and Outlook

The Data Quality Chain

• Data quality chain established:

- First processing of all CERN 2007 and FNAL 2008 beam runs done
- Latest versions of the ROOT trees:
 - include all events and information on trigger, drift chambers, ECAL, HCAL, TCMT and Slow Control
 - /grid/calice/tb-fnal(cern)/data_quality/prod_003/...
- Summary plots and control distributions for each run:
 - /grid/calice/tb-fnal(cern)/data_quality/check_003/...

Drift Chamber Efficiency

- Efficiency = $\frac{\text{events with reconstructed track}}{\text{all events}}$ (with 10x10 coincidence)
- Observed DC efficiency = efficiency (hardware) x efficiency (reconstruction)
- TBTrack not applicable for FNAL yet

Run Composition for FNAL Data

- No muon or electron runs, only runs with > 10k beam events
- Events with beam trigger
- Pedestal events
- LED calibration events (calibBit not set for converted September runs)
- Unverified triggers

20 February 2009

Trigger Issues at FNAL

- Major contribution to unverified triggers: events without valid trigger main word
- September: LED calibration events contribute to unverified triggers (calibration bit not set)
- Observed discrepancies between veto trigger rates displayed in online monitor and extracted from TriggerProcessor / ROOT-trees

Classification of Beam Events

> 0.75,

Classification of Beam Events

- Electrons (no veto)
- Mip-like events (25 layers with 0 < # hits < 4, energy sum < 100 mip, no veto)
- Pion candidates (not e, not mip, # hits > 40, no veto)

Beam Events Collected at FNAL

- No muon or electron runs, only runs with > 10k beam events
- Event classification (selection criteria not applicable < 4 GeV):
 - Pion candidates (no electron, no mip, no veto)
 - Electrons (electron in ECAL, no veto)
 - Mip-like particles (mip in HCAL, no veto)
 - Events with veto

Relative Beam Composition (FNAL)

- 10 GeV run, combined data taking
- Veto trigger (blank histogram)
- Unverified trigger
- Calibration events
- Pedestal events

100 50 33 v30 500827_v27 2 2 v27 έ 500447_v27 <u>7</u>27 <u>v</u>27 2 500455_v27 500642_v27 500828_v2 500460 500857 500867 500465_ 500641_ 500432 500444 500640 500421 500829 500379 pion enhanced beam

- (Cherenkov triggered)Hadron candidates
- Electrons
- Mip like events
- 500460: ECAL off (no electron selection)

20 February 2009

HCAL Pedestal Stability at FNAL

- high noise in some july runs
 - to be investigated in more detail, for now: cut on nHits (5 < nHits < 30)
- # noise hits depends on 0.5 mip threshold
 - Up to now: fixed mip calibration, no correction for voltage adjustment (july) and temperature changes
- CERN 2007: mean # hits pedestal = 12

Noise Hits vs Temperature (HCAL)

- Linear relation between # hits (pedestal) and temperature
- FNAL: only May and July runs included, temperature missing for September
- Temperature range CERN: 4 K, FNAL: 5 K (May July)

Reconstructed Energy (HCAL)

- Aim: compare reconstructed energy and beam energy to find deviations larger than 10%
- Sample: mixed and pion runs
- Event selection: pions fully contained in HCAL (mip-like track in ECAL but not in HCAL, no leakage to TCMT)
- Beam Energy
 - CERN: calculated from magnet currents
 - FNAL: extracted from RunLog
- No temperature corrections applied
- Inappropriate mip calibration applied for FNAL (July and September)

Open Issues (FNAL)

- Stage position, rotation and beam line information: will be included as soon as they are available in the database (converter updated, but not tested yet)
- SlowControl data (e.g. Temperature) for September period: missing
- Cherenkov (particle identification): trigger bits are available, pressure will be available with beam line data, **but**:

- evaluation of these information is missing

- Multiplicity counter (fraction of multi-particle events): missing, needs to be included and calibrated (available for CERN)
- Run version / DAQ settings (-v23, -v27, ...): **missing** (available from RunLog)
- Veto trigger: Discrepancies observed between online monitor and distributions coming from the TriggerProcessor / the ROOT-trees
- Drift chambers: TBTrack Code not available for FNAL
- Information for ECAL and TCMT are included:
 - performance checks can be done, but need to be developed

Already Available Information

ROOT Object Browser				_ - ×	
<u>F</u> ile <u>V</u> iew <u>O</u> ptions				<u>H</u> elp	
🔄 bigtree 💽 🗈 📴 🧱 🏢 🕼 🚱 🔕				Option 💽 👻	
Contents of "/ROOT File	s/fnal/prod_003/Reco5002	36_Evt1_Lvl2.root/bigtree	II		
🔖 DC_XChi2	🔖 DC_XEcalImpact	🔖 DC_XFoD	🔖 DC_XHcalImpact	🔖 DC_XOffset	
DC_XSlope	🔖 DC_XdOffset	🔖 DC_XdSlope	🔖 DC_VChi2	🔖 DC_VEcalImpact	
🔖 DC_VFoD	🔖 DC_VHcallmpact	🔖 DC_YOffset	🔖 DC_VSlope	🔖 DC_VdOffset	
🔖 DC_VdSlope	🔖 TBTrack_DC_XChi2	🔖 TBTrack_DC_XHcalImpact	🔖 TBTrack_DC_VChi2	🔖 TBTrack_DC_VHcalImpact	
🔖 a100×100Bit	🔖 a10×10Bit	🔖 a3×3Bit	💸 ahc_cogl	🔖 ahc_coglGeom	
🔖 ahc_coglGeomPerLayer	🔖 ahc_cogIPerLayer	💸 ahc_cogJ	🔖 ahc_cogJGeom	🔖 ahc_cogJGeomPerLayer	
🔖 ahc_cogJPerLayer	🔖 ahc_cogX	💸 ahc_cog X5Layer	🔖 ahc_cogXPerLayer	🔖 ahc_cogV	
🔖 ahc_cogV5Layer	🔖 ahc_cogVPerLayer	💸 ahc_cog Z	🔖 ahc_cogZ5Layer	🔖 ahc_energyDensity	
🔖 ahc_energyPerLayer	🔖 ahc_energyPerLayer_err	🔖 ahc_energy Sum	🔖 ahc_energy Sum5Layer	🔖 ahc_iEvt	
🔖 ahc_n Hits	🔖 ahc_n Hits5Layer	🔖 ahc_n HitsPerLayer	🔖 ahc_nLayers	🗽 ahc_radius	
🔖 ahc_radiusEw	🔖 ahc_radiusEwPerLayer	🔖 ahc_radiusPerLayer	🔖 b100×100Bit	🔖 b10×10Bit	
🔖 b3x3Bit	🔖 beam Bit	🗽 calib Bit	🔖 cherenkow2Bit	sherenkow Bit	
🔖 cmbTemp	🔖 cosmics Bit	🔖 emc_cogX	temc_cogX5Layer	🔖 emc_cogXPerLayer	
🔖 emc_cogV	🔖 emc_cogV5Layer	🔖 emc_cogVPerLayer	🗽 emc_cogZ	🔖 emc_cogZ5Layer	
💸 emc_energyDensity	እ emc_energyPerLayer	እ emc_energyPerLayer_err	🗽 emc_energy Sum	temc_energySum5Layer	
🗽 emc_iEvt	🗽 emc_n Hits	🗽 emc_n Hits5Layer	እ emc_nHitsPerLayer	🔉 emc_nLayers	
🗽 emc_radius	🗽 emc_radiusEw	🗽 emc_radiusEw Per Layer	🗽 emc_radius Per Layer	🔖 eventEnergyInMev	
🔖 eventNumber	🔖 eventTime	🗽 hbab Current	🗽 hbab HV	🔖 hbabTemp	
🔖 hold Start	🔖 holdWidth	S mod Block	s modTemp	Nodule Nodule	
S multiADC	🦄 multiBit	🗽 pedestalBit	s position	🔖 purePedBit	
🗽 run Number	🦥 spillBit	🗽 tcm_cogX	tcm_cogX5Layer	tcm_cogXPerLayer	
tcm_cog∀	🔖 tcm_cogV5Layer	🗽 tcm_cogVPerLayer	እ tcm_cogZ	🗽 tcm_cogZ5Layer	
🔖 tcm_energyDensity	🗽 tcm_energyPerLayer	እ tcm_energyPerLayer_err	እ tcm_energySum	እ tcm_energySum5Layer	
🔖 tcm_iEvt	🗽 tcm_nHits	tcm_nHits5Layer	tcm_nHitsPerLayer	tcm_nLayers	
🗽 tem, radius	እ tem radiusEw	tcm_radiusEwPerLaver	🔉 tom radiusPerLaver	🔉 vetoBit	

20 February 2009

Summary and Outlook

- Data quality chain established
- First survey of the **entire** data sets collected at CERN and FNAL performed
- Run and beam compositions studied
- Reconstructed energy checked (for HCAL)
- HCAL operation stability studied
- Still several open issues any ideas / contributions are highly welcome

BACKUP SLIDES

Temperature Development (HCAL)

- Temperature range CERN: 4 K
- Temperature range FNAL: 5 K (May July)

Alignment

- Run: FNAL, 30 GeV, combined
- Center of gravity (cog) averaged • over first 5 HCAL layers
- Offset:
 - x: 3 mm
 - y: 4 mm
- Slope:
 - x: 0.9
 - Y: 0.7

-40

-20

0

DC_v01 y (HCAL impact) [mm]

20

40

-20

-40

-60

More Electron Selection Plots

Run 500432

Run 500641

